1,214 research outputs found

    Bounds on Binary Locally Repairable Codes Tolerating Multiple Erasures

    Full text link
    Recently, locally repairable codes has gained significant interest for their potential applications in distributed storage systems. However, most constructions in existence are over fields with size that grows with the number of servers, which makes the systems computationally expensive and difficult to maintain. Here, we study linear locally repairable codes over the binary field, tolerating multiple local erasures. We derive bounds on the minimum distance on such codes, and give examples of LRCs achieving these bounds. Our main technical tools come from matroid theory, and as a byproduct of our proofs, we show that the lattice of cyclic flats of a simple binary matroid is atomic.Comment: 9 pages, 1 figure. Parts of this paper were presented at IZS 2018. This extended arxiv version includes corrected versions of Theorem 1.4 and Proposition 6 that appeared in the IZS 2018 proceeding

    Codes With Hierarchical Locality

    Full text link
    In this paper, we study the notion of {\em codes with hierarchical locality} that is identified as another approach to local recovery from multiple erasures. The well-known class of {\em codes with locality} is said to possess hierarchical locality with a single level. In a {\em code with two-level hierarchical locality}, every symbol is protected by an inner-most local code, and another middle-level code of larger dimension containing the local code. We first consider codes with two levels of hierarchical locality, derive an upper bound on the minimum distance, and provide optimal code constructions of low field-size under certain parameter sets. Subsequently, we generalize both the bound and the constructions to hierarchical locality of arbitrary levels.Comment: 12 pages, submitted to ISIT 201
    corecore