760,724 research outputs found

    Towards dense, realistic granular media in 2D

    Get PDF
    The development of an applicable theory for granular matter - with both qualitative and quantitative value - is a challenging prospect, given the multitude of states, phases and (industrial) situations it has to cover. Given the general balance equations for mass, momentum and energy, the limiting case of dilute and almost elastic granular gases, where kinetic theory works perfectly well, is the starting point.\ud \ud In most systems, low density co-exists with very high density, where the latter is an open problem for kinetic theory. Furthermore, many additional nonlinear phenomena and material properties are important in realistic granular media, involving, e.g.:\ud \ud (i) multi-particle interactions and elasticity\ud (ii) strong dissipation,\ud (iii) friction,\ud (iv) long-range forces and wet contacts,\ud (v) wide particle size distributions and\ud (vi) various particle shapes.\ud \ud \ud Note that, while some of these issues are more relevant for high density, others are important for both low and high densities; some of them can be dealt with by means of kinetic theory, some cannot.\ud \ud This paper is a review of recent progress towards more realistic models for dense granular media in 2D, even though most of the observations, conclusions and corrections given are qualitatively true also in 3D.\ud \ud Starting from an elastic, frictionless and monodisperse hard sphere gas, the (continuum) balance equations of mass, momentum and energy are given. The equation of state, the (Navier–Stokes level) transport coefficients and the energy-density dissipation rate are considered. Several corrections are applied to those constitutive material laws - one by one - in order to account for the realistic physical effects and properties listed above

    Digital Twin in the IoT context: a survey on technical features, scenarios and architectural models

    Get PDF
    Digital Twin is an emerging concept that is gaining attention in various industries. It refers to the ability to clone a physical object into a software counterpart. The softwarized object, termed logical object, reflects all the important properties and characteristics of the original object within a specific application context. To fully determine the expected properties of the Digital Twin, this paper surveys the state of the art starting from the original definition within the manufacturing industry. It takes into account related proposals emerging in other fields, namely, Augmented and Virtual Reality (e.g., avatars), Multi-agent systems, and virtualization. This survey thereby allows for the identification of an extensive set of Digital Twin features that point to the “softwarization” of physical objects. To properly consolidate a shared Digital Twin definition, a set of foundational properties is identified and proposed as a common ground outlining the essential characteristics (must-haves) of a Digital Twin. Once the Digital Twin definition has been consolidated, its technical and business value is discussed in terms of applicability and opportunities. Four application scenarios illustrate how the Digital Twin concept can be used and how some industries are applying it. The scenarios also lead to a generic DT architectural Model. This analysis is then complemented by the identification of software architecture models and guidelines in order to present a general functional framework for the Digital Twin. The paper, eventually, analyses a set of possible evolution paths for the Digital Twin considering its possible usage as a major enabler for the softwarization process

    Symmetries and Paraparticles as a Motivation for Structuralism

    Get PDF
    This paper develops an analogy proposed by Stachel between general relativity (GR) and quantum mechanics (QM) as regards permutation invariance. Our main idea is to overcome Pooley's criticism of the analogy by appeal to paraparticles. In GR the equations are (the solution space is) invariant under diffeomorphisms permuting spacetime points. Similarly, in QM the equations are invariant under particle permutations. Stachel argued that this feature--a theory's `not caring which point, or particle, is which'--supported a structuralist ontology. Pooley criticizes this analogy: in QM the (anti-)symmetrization of fermions and bosons implies that each individual state (solution) is fixed by each permutation, while in GR a diffeomorphism yields in general a distinct, albeit isomorphic, solution. We define various versions of structuralism, and go on to formulate Stachel's and Pooley's positions, admittedly in our own terms. We then reply to Pooley. Though he is right about fermions and bosons, QM equally allows more general types of symmetry, in which states (vectors, rays or density operators) are not fixed by all permutations (called `paraparticle states'). Thus Stachel's analogy is revived.Comment: 45 pages, Latex, 3 Figures; forthcoming in British Journal for the Philosophy of Scienc
    corecore