349,232 research outputs found

    Cooperative learning of requirements engineering through an international educational scenario enabled by the MOY programme

    Get PDF
    The International Excellence Campus for Higher Education and Research of the Region of Murcia, and the Mediterranean Office for Youth (MOY) programme are new initiatives that offer opportunities for designing educational activities in which can take part international students enrolled in academic degrees at different universities. Besides, a significant rise in distributed and collaborative software development has been observed in recent years (Global Software Development, GSD), which involves space, time and socio-cultural distances and requires new techniques, tools and practices to meet new challenges and opportunities. In addition, poor requirements are one of the most common causes of project failure in any domain. Projects which devote more resources to Requirements Engineering (RE) result in lower costs and lower deviations of their planning. Therefore, the relevance of education and training the future systems and software professionals in RE activities and techniques, in particular in GSD environments, must be stressed. We have conducted an educational innovation activity based on teaching RE in co-located and GSD contexts. This activity has been carried out in the form of an experiment with students. This paper presents the scenario in which this educational activity is framed as well as some preliminary results of this experiment

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Towards reliable grasping and manipulation in household environments

    Get PDF
    Abstract We present a complete software architecture for reliable grasping of household objects. Our work combines aspects such as scene interpretation from 3D range data, grasp planning, motion planning, and grasp failure identification and recovery using tactile sensors. We build upon, and add several new contributions to the significant prior work in these areas. A salient feature of our work is the tight coupling between perception (both visual and tactile) and manipulation, aiming to address the uncertainty due to sensor and execution errors. This integration effort has revealed new challenges, some of which can be addressed through system and software engineering, and some of which present opportunities for future research. Our approach is aimed at typical indoor environments, and is validated by long running experiments where the PR2 robotic platform was able to consistently grasp a large variety of known and unknown objects. The set of tools and algorithms for object grasping presented here have been integrated into the open-source Robot Operating System (ROS)

    Product Lifecycle Management - Application of Patterning Methods to Gas Turbine Blades and Creation of Learning Materials

    Get PDF
    To compete in the global marketplace, companies need to embrace virtual design and manufacturing methods. Product Lifecycle Management (PLM) embodies both the workflow processes and tools to bring forth products from conception to design to fabrication to service to decommissioning, and to eventual recycling. In response to the growing demand for engineers and technicians with these critical skills, colleges and universities should introduce these virtual tools through seminars, software workshops, and computer laboratory sessions. Some of the opportunities in the PLM Center at Clemson University include short courses on PLM practices, focused software training sessions, hands-on exploration activities, and research projects. The participants across campus include creative inquiry students, capstone design classes, graduate researchers, and community outreach for K-12 students. Through these interactions, participants will gain insight into the challenges and opportunities with virtual engineering processes and software. The recent worldwide pandemic has demonstrated the need for engineers skilled in virtual design methods to enable the digital design, manufacturing, and support processes to occur in, and remote of, the workplace. Computer-aided design (CAD) and computer-aided engineering (CAE) methods embody the software tools that bring forth products from conception to design. A variety of packages are available, which allow for the progress of a product to be tracked and detailed changes to be made along the way. One complex product currently designed using CAE software is a natural gas fired turbine for electrical power generation. In these thermo-dynamic rotational systems, blade cooling using internal forced airflow is vital to withstand the operating temperatures in the combustion chamber. Accordingly, ribbed surface disruptors, known as turbulators, are placed inside the turbine blades to promote air mixing to help remove heat from the hot surfaces. Three CAE patterning features will be examined to create these turbulators with evaluation metrics based on the execution speed, accessibility, accuracy, adaptability, and relevance. The numerical case study results revealed that the face pattern method was the most suitable option with productivity time improvements of 5% in comparison to the feature and geometry pattern approaches. The feature pattern method proved to be viable for smaller modeling changes which require significant detail. However, the geometry patterning method did not show any indications of being a usable option over the others in any scenario tested. To prepare the next generation of engineers for these PLM processes and software tools, a PEER & WISE workshop module has been created for students to engage with these virtual concepts. In these four-day, 90-minute sessions, middle school students will learn about engineering design processes, fundamental engineering and science concepts, and CAD software. They will create virtual mechanical components using CAD software, while hands-on tasks will enable the creation of mechanical assemblies using discrete components to demonstrate the functionality of gears and drivelines. To assess the student experience, a survey was created and submitted for IRB approval. The pandemic created a unique situation for these prepared sessions as students could not participate right away, however, they will be offered in the future

    Cloud engineering is search based software engineering too

    Get PDF
    Many of the problems posed by the migration of computation to cloud platforms can be formulated and solved using techniques associated with Search Based Software Engineering (SBSE). Much of cloud software engineering involves problems of optimisation: performance, allocation, assignment and the dynamic balancing of resources to achieve pragmatic trade-offs between many competing technical and business objectives. SBSE is concerned with the application of computational search and optimisation to solve precisely these kinds of software engineering challenges. Interest in both cloud computing and SBSE has grown rapidly in the past five years, yet there has been little work on SBSE as a means of addressing cloud computing challenges. Like many computationally demanding activities, SBSE has the potential to benefit from the cloud; ‘SBSE in the cloud’. However, this paper focuses, instead, of the ways in which SBSE can benefit cloud computing. It thus develops the theme of ‘SBSE for the cloud’, formulating cloud computing challenges in ways that can be addressed using SBSE

    A neuroscientific approach to exploring fundamental questions in VR

    Get PDF
    Virtual reality presents a new set of challenges and opportunities for both engineers and neuroscientists. Here we provide an overview of a programme designed by a group of psychologists, neuroscientists and VR specialists to address some of the most outstanding issues in the field ranging from the very low-level (for example, how the brain processed motion-in-depth signals generated by stereoscopic display devices) to the very high level (how virtual environments can lead to a sense of immersion and emotional engagement). We present data from psychophysical, electrophysiological and neuroimaging experiments and explain how different research methodologies can be applied to different problems in the field of VR/AR. We end by describing an open-source, extensible software package for studying issues in VR that can interface to common laboratory measurement equipment and discussing future directions and challenges facing the neuroscience and VR engineering communities

    Ready for Tomorrow: Demand-Side Emerging Skills for the 21st Century

    Get PDF
    As part of the Ready for the Job demand-side skill assessment, the Heldrich Center explored emerging work skills that will affect New Jersey's workforce in the next three to five years. The Heldrich Center identified five specific areas likely to generate new skill demands: biotechnology, security, e-learning, e-commerce, and food/agribusiness. This report explores the study's findings and offers recommendations for improving education and training in New Jersey
    • 

    corecore