91,426 research outputs found

    Causality, Analyticity and an IR Obstruction to UV Completion

    Get PDF
    We argue that certain apparently consistent low-energy effective field theories described by local, Lorentz-invariant Lagrangians, secretly exhibit macroscopic non-locality and cannot be embedded in any UV theory whose S-matrix satisfies canonical analyticity constraints. The obstruction involves the signs of a set of leading irrelevant operators, which must be strictly positive to ensure UV analyticity. An IR manifestation of this restriction is that the "wrong" signs lead to superluminal fluctuations around non-trivial backgrounds, making it impossible to define local, causal evolution, and implying a surprising IR breakdown of the effective theory. Such effective theories can not arise in quantum field theories or weakly coupled string theories, whose S-matrices satisfy the usual analyticity properties. This conclusion applies to the DGP brane-world model modifying gravity in the IR, giving a simple explanation for the difficulty of embedding this model into controlled stringy backgrounds, and to models of electroweak symmetry breaking that predict negative anomalous quartic couplings for the W and Z. Conversely, any experimental support for the DGP model, or measured negative signs for anomalous quartic gauge boson couplings at future accelerators, would constitute direct evidence for the existence of superluminality and macroscopic non-locality unlike anything previously seen in physics, and almost incidentally falsify both local quantum field theory and perturbative string theory.Comment: 34 pages, 10 figures; v2: analyticity arguments improved, discussion on non-commutative theories and minor clarifications adde

    Reweighted belief propagation and quiet planting for random K-SAT

    Full text link
    We study the random K-satisfiability problem using a partition function where each solution is reweighted according to the number of variables that satisfy every clause. We apply belief propagation and the related cavity method to the reweighted partition function. This allows us to obtain several new results on the properties of random K-satisfiability problem. In particular the reweighting allows to introduce a planted ensemble that generates instances that are, in some region of parameters, equivalent to random instances. We are hence able to generate at the same time a typical random SAT instance and one of its solutions. We study the relation between clustering and belief propagation fixed points and we give a direct evidence for the existence of purely entropic (rather than energetic) barriers between clusters in some region of parameters in the random K-satisfiability problem. We exhibit, in some large planted instances, solutions with a non-trivial whitening core; such solutions were known to exist but were so far never found on very large instances. Finally, we discuss algorithmic hardness of such planted instances and we determine a region of parameters in which planting leads to satisfiable benchmarks that, up to our knowledge, are the hardest known.Comment: 23 pages, 4 figures, revised for readability, stability expression correcte

    Scale-Invariant Gravity: Geometrodynamics

    Get PDF
    We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t scaling developed in the parallel particle dynamics paper by one of the authors. In spatially-compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different.Comment: 33 pages. Published version (has very minor style changes due to changes in companion paper

    Time asymmetric spacetimes near null and spatial infinity. I. Expansions of developments of conformally flat data

    Full text link
    The Conformal Einstein equations and the representation of spatial infinity as a cylinder introduced by Friedrich are used to analyse the behaviour of the gravitational field near null and spatial infinity for the development of data which are asymptotically Euclidean, conformally flat and time asymmetric. Our analysis allows for initial data whose second fundamental form is more general than the one given by the standard Bowen-York Ansatz. The Conformal Einstein equations imply upon evaluation on the cylinder at spatial infinity a hierarchy of transport equations which can be used to calculate in a recursive way asymptotic expansions for the gravitational field. It is found that the the solutions to these transport equations develop logarithmic divergences at certain critical sets where null infinity meets spatial infinity. Associated to these, there is a series of quantities expressible in terms of the initial data (obstructions), which if zero, preclude the appearance of some of the logarithmic divergences. The obstructions are, in general, time asymmetric. That is, the obstructions at the intersection of future null infinity with spatial infinity are different, and do not generically imply those obtained at the intersection of past null infinity with spatial infinity. The latter allows for the possibility of having spacetimes where future and past null infinity have different degrees of smoothness. Finally, it is shown that if both sets of obstructions vanish up to a certain order, then the initial data has to be asymptotically Schwarzschildean to some degree.Comment: 32 pages. First part of a series of 2 papers. Typos correcte

    Uniqueness of Petrov type D spatially inhomogeneous irrotational silent models

    Get PDF
    The consistency of the constraint with the evolution equations for spatially inhomogeneous and irrotational silent (SIIS) models of Petrov type I, demands that the former are preserved along the timelike congruence represented by the velocity of the dust fluid, leading to \emph{new} non-trivial constraints. This fact has been used to conjecture that the resulting models correspond to the spatially homogeneous (SH) models of Bianchi type I, at least for the case where the cosmological constant vanish. By exploiting the full set of the constraint equations as expressed in the 1+3 covariant formalism and using elements from the theory of the spacelike congruences, we provide a direct and simple proof of this conjecture for vacuum and dust fluid models, which shows that the Szekeres family of solutions represents the most general class of SIIS models. The suggested procedure also shows that, the uniqueness of the SIIS of the Petrov type D is not, in general, affected by the presence of a non-zero pressure fluid. Therefore, in order to allow a broader class of Petrov type I solutions apart from the SH models of Bianchi type I, one should consider more general ``silent'' configurations by relaxing the vanishing of the vorticity and the magnetic part of the Weyl tensor but maintaining their ``silence'' properties i.e. the vanishing of the curls of Eab,HabE_{ab},H_{ab} and the pressure pp.Comment: Latex, 19 pages, no figures;(v2) some clarification remarks and an appendix are added; (v3) minor changes to match published versio

    A stability result for purely radiative spacetimes

    Full text link
    An existence and stability result for a class of purely radiative vacuum spacetimes arising from hyperboloidal data is given. This result generalises semiglobal existence results for Minkowski-like spacetimes to the case where the reference solution contains gravitational radiation. The analysis makes use of the extended conformal field equations and a gauge based on conformal geodesics so that the location and structure of the conformal boundary of the perturbed solutions is known a priori.Comment: 25 pages, 4 figure

    Robust Processing of Natural Language

    Full text link
    Previous approaches to robustness in natural language processing usually treat deviant input by relaxing grammatical constraints whenever a successful analysis cannot be provided by ``normal'' means. This schema implies, that error detection always comes prior to error handling, a behaviour which hardly can compete with its human model, where many erroneous situations are treated without even noticing them. The paper analyses the necessary preconditions for achieving a higher degree of robustness in natural language processing and suggests a quite different approach based on a procedure for structural disambiguation. It not only offers the possibility to cope with robustness issues in a more natural way but eventually might be suited to accommodate quite different aspects of robust behaviour within a single framework.Comment: 16 pages, LaTeX, uses pstricks.sty, pstricks.tex, pstricks.pro, pst-node.sty, pst-node.tex, pst-node.pro. To appear in: Proc. KI-95, 19th German Conference on Artificial Intelligence, Bielefeld (Germany), Lecture Notes in Computer Science, Springer 199
    • …
    corecore