152,818 research outputs found

    Some Error Analysis on Virtual Element Methods

    Full text link
    Some error analysis on virtual element methods including inverse inequalities, norm equivalence, and interpolation error estimates are presented for polygonal meshes which admits a virtual quasi-uniform triangulation

    SUPG-stabilized Virtual Elements for diffusion-convection problems: a robustness analysis

    Full text link
    The objective of this contribution is to develop a convergence analysis for SUPG-stabilized Virtual Element Methods in diffusion-convection problems that is robust also in the convection dominated regime. For the original method introduced in [Benedetto et al, CMAME 2016] we are able to show an "almost uniform" error bound (in the sense that the unique term that depends in an unfavorable way on the parameters is damped by a higher order mesh-size multiplicative factor). We also introduce a novel discretization of the convection term that allows us to develop error estimates that are fully robust in the convection dominated cases. We finally present some numerical result

    A Virtual Element Method for a Nonlocal FitzHugh-Nagumo Model of Cardiac Electrophysiology

    Full text link
    We present a Virtual Element Method (VEM) for a nonlocal reaction-diffusion system of the cardiac electric field. To this system, we analyze an H1(Ω)H^1(\Omega)-conforming discretization by means of VEM which can make use of general polygonal meshes. Under standard assumptions on the computational domain, we establish the convergence of the discrete solution by considering a series of a priori estimates and by using a general LpL^p compactness criterion. Moreover, we obtain optimal order space-time error estimates in the L2L^2 norm. Finally, we report some numerical tests supporting the theoretical results

    Virtual Element Methods on Meshes with Small Edges or Faces

    Full text link
    We consider a model Poisson problem in Rd\R^d (d=2,3d=2,3) and establish error estimates for virtual element methods on polygonal or polyhedral meshes that can contain small edges (d=2d=2) or small faces (d=3d=3).Comment: 36 page

    The nonconforming virtual element method for eigenvalue problems

    Full text link
    We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L^2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problem. The proposed schemes provide a correct approximation of the spectrum, in particular we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice

    Virtual Element Method for fourth order problems: L2−L^2-estimates

    Full text link
    We analyse the family of C1C^1-Virtual Elements introduced in \cite{Brezzi:Marini:plates} for fourth-order problems and prove optimal estimates in L2L^2 and in H1H^1 via classical duality arguments
    • …
    corecore