1,598 research outputs found

    Central Limit Theorems for Wavelet Packet Decompositions of Stationary Random Processes

    Full text link
    This paper provides central limit theorems for the wavelet packet decomposition of stationary band-limited random processes. The asymptotic analysis is performed for the sequences of the wavelet packet coefficients returned at the nodes of any given path of the MM-band wavelet packet decomposition tree. It is shown that if the input process is centred and strictly stationary, these sequences converge in distribution to white Gaussian processes when the resolution level increases, provided that the decomposition filters satisfy a suitable property of regularity. For any given path, the variance of the limit white Gaussian process directly relates to the value of the input process power spectral density at a specific frequency.Comment: Submitted to the IEEE Transactions on Signal Processing, October 200

    A Functional Wavelet-Kernel Approach for Continuous-time Prediction

    Get PDF
    We consider the prediction problem of a continuous-time stochastic process on an entire time-interval in terms of its recent past. The approach we adopt is based on functional kernel nonparametric regression estimation techniques where observations are segments of the observed process considered as curves. These curves are assumed to lie within a space of possibly inhomogeneous functions, and the discretized times series dataset consists of a relatively small, compared to the number of segments, number of measurements made at regular times. We thus consider only the case where an asymptotically non-increasing number of measurements is available for each portion of the times series. We estimate conditional expectations using appropriate wavelet decompositions of the segmented sample paths. A notion of similarity, based on wavelet decompositions, is used in order to calibrate the prediction. Asymptotic properties when the number of segments grows to infinity are investigated under mild conditions, and a nonparametric resampling procedure is used to generate, in a flexible way, valid asymptotic pointwise confidence intervals for the predicted trajectories. We illustrate the usefulness of the proposed functional wavelet-kernel methodology in finite sample situations by means of three real-life datasets that were collected from different arenas

    Extreme Value Analysis of Empirical Frame Coefficients and Implications for Denoising by Soft-Thresholding

    Full text link
    Denoising by frame thresholding is one of the most basic and efficient methods for recovering a discrete signal or image from data that are corrupted by additive Gaussian white noise. The basic idea is to select a frame of analyzing elements that separates the data in few large coefficients due to the signal and many small coefficients mainly due to the noise \epsilon_n. Removing all data coefficients being in magnitude below a certain threshold yields a reconstruction of the original signal. In order to properly balance the amount of noise to be removed and the relevant signal features to be kept, a precise understanding of the statistical properties of thresholding is important. For that purpose we derive the asymptotic distribution of max_{\omega \in \Omega_n} || for a wide class of redundant frames (\phi_\omega^n: \omega \in \Omega_n}. Based on our theoretical results we give a rationale for universal extreme value thresholding techniques yielding asymptotically sharp confidence regions and smoothness estimates corresponding to prescribed significance levels. The results cover many frames used in imaging and signal recovery applications, such as redundant wavelet systems, curvelet frames, or unions of bases. We show that `generically' a standard Gumbel law results as it is known from the case of orthonormal wavelet bases. However, for specific highly redundant frames other limiting laws may occur. We indeed verify that the translation invariant wavelet transform shows a different asymptotic behaviour.Comment: [Content: 39 pages, 4 figures] Note that in this version 4 we have slightely changed the title of the paper and we have rewritten parts of the introduction. Except for corrected typos the other parts of the paper are the same as the original versions

    Statistical Properties for Coherence Estimators From Evolutionary Spectra

    No full text

    Constructing a quasilinear moving average using the scaling function

    Get PDF
    The scaling function from multiresolution analysis can be used to constuct a smoothing tool in the context of time series analysis. We give a time series smoothing function for which we show the properties of a quasilinear moving average. Furthermore; we discuss its features and especially derive the distributional properties of our quasilinear moving average given some simple underlying stochastic processes. Eventually we compare it to existing smoothing methods in order to motivate its application --Scaling function,Quasilinear moving average,Influence function

    A Statistical Study of Wavelet Coherence for Stationary and Nonstationary Processes

    No full text
    The coherence function measures the correlation between a pair of random processes in the frequency domain. It is a well studied and understood concept, and the distributional properties of conventional coherence estimators for stationary processes have been derived and applied in a number of physical settings. In recent years the wavelet coherence measure has been used to analyse correlations between a pair of processes in the time-scale domain, typically in hypothesis testing scenarios, but it has proven resistant to analytic study with resort to simulations for statistical properties. As part of the null hypothesis being tested, such simulations invariably assume joint stationarity of the series. In this thesis two methods of calculating wavelet coherence have been developed and distributional properties of the wavelet coherence estimators have been fully derived. With the first method, in an analogous framework to multitapering, wavelet coherence is estimated using multiple orthogonal Morse wavelets. The second coherence estimator proposed uses time-domain smoothing and a single Morlet wavelet. Since both sets of wavelets are complex-valued, we consider the case of wavelet coherence calculated from discrete-time complex-valued and stationary time series. Under Gaussianity, the Goodman distribution is shown, for large samples, to be appropriate for wavelet coherence. The true wavelet coherence value is identified in terms of its frequency domain equivalent and degrees of freedom can be readily derived. The theoretical results are verified via simulations. The notion of a spectral function is considered for the nonstationary case. Particular focus is given to Priestley’s evolutionary process and a Wold-Cramér nonstationary representation where time-varying spectral functions can be clearly defined. Methods of estimating these spectra are discussed, including the continuous wavelet transform, which when performed with a Morlet wavelet and temporal smoothing is shown to bear close resemblance to Priestley’s own estimation procedure. The concept of coherence for bivariate evolutionary nonstationary processes is discussed in detail. In such situations it can be shown that the coherence function, as in the stationary case, is invariant of time. It is shown that for spectra that vary slowly in time the derived statistics of the temporally smoothed wavelet coherence estimator are appropriate. Further to this the similarities with Priestleys spectral estimator are exploited to derive distributional properties of the corresponding Priestley coherence estimator. A well known class of the evolutionary and Wold-Cramér nonstationary processes are the modulated stationary processes. Using these it is shown that bivariate processes can be constructed that exhibit coherence variation with time, frequency, and time-and-frequency. The temporally smoothed Morlet wavelet coherence estimator is applied to these processes. It is shown that accurate coherence estimates can be achieved for each type of coherence, and that the distributional properties derived under stationarity are applicable

    On a class of self-similar processes with stationary increments in higher order Wiener chaoses

    Full text link
    We study a class of self-similar processes with stationary increments belonging to higher order Wiener chaoses which are similar to Hermite processes. We obtain an almost sure wavelet-like expansion of these processes. This allows us to compute the pointwise and local H\"older regularity of sample paths and to analyse their behaviour at infinity. We also provide some results on the Hausdorff dimension of the range and graphs of multidimensional anisotropic self-similar processes with stationary increments defined by multiple Wiener integrals.Comment: 22 page
    corecore