536 research outputs found

    Modeling Time in Computing: A Taxonomy and a Comparative Survey

    Full text link
    The increasing relevance of areas such as real-time and embedded systems, pervasive computing, hybrid systems control, and biological and social systems modeling is bringing a growing attention to the temporal aspects of computing, not only in the computer science domain, but also in more traditional fields of engineering. This article surveys various approaches to the formal modeling and analysis of the temporal features of computer-based systems, with a level of detail that is suitable also for non-specialists. In doing so, it provides a unifying framework, rather than just a comprehensive list of formalisms. The paper first lays out some key dimensions along which the various formalisms can be evaluated and compared. Then, a significant sample of formalisms for time modeling in computing are presented and discussed according to these dimensions. The adopted perspective is, to some extent, historical, going from "traditional" models and formalisms to more modern ones.Comment: More typos fixe

    Probabilistic Interval Temporal Logic and Duration Calculus with Infinite Intervals: Complete Proof Systems

    Full text link
    The paper presents probabilistic extensions of interval temporal logic (ITL) and duration calculus (DC) with infinite intervals and complete Hilbert-style proof systems for them. The completeness results are a strong completeness theorem for the system of probabilistic ITL with respect to an abstract semantics and a relative completeness theorem for the system of probabilistic DC with respect to real-time semantics. The proposed systems subsume probabilistic real-time DC as known from the literature. A correspondence between the proposed systems and a system of probabilistic interval temporal logic with finite intervals and expanding modalities is established too.Comment: 43 page

    Dynamic analysis overview and a proposed verification tool for temporal properties in security-critical software

    Get PDF
    The need for correct software is increasing as computers are proliferating in every aspect of our lives. Dynamic analysis is a possible way of increasing the reliability of software by introducing a monitoring and verification mechanism over and above a computer system, so that if under some unprecedented circumstance, any of its specifications are violated, an alarm will be raised. This paper gives an overview of the literature in the subject and also puts forward a proposal of further research and investigation which seems to be very promising.peer-reviewe

    Two-sorted metric temporal logic

    Get PDF
    AbstractTemporal logic has been successfully used for modeling and analyzing the behavior of reactive and concurrent systems. Standard temporal logic is inadequate for real-time applications because it only deals with qualitative timing properties. This is overcome by metric temporal logics which offer a uniform logical framework in which both qualitative and quantitative timing properties can be expressed by making use of a parameterized operator of relative temporal realization.In this paper we deal with completeness issues for basic systems of metric temporal logic —despite their relevance, such issues have been ignored or only partially addressed in the literature. We view metric temporal logics as two-sorted formalisms having formulae ranging over time instants and parameters ranging over an (ordered) abelian group of temporal displacements. We first provide an axiomatization of the pure metric fragment of the logic, and prove its soundness and completeness. Then, we show how to obtain the metric temporal logic of linear orders by adding an ordering over displacements. Finally, we consider general metric temporal logics allowing quantification over algebraic variables and free mixing of algebraic formulae and temporal propositional symbols

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 31 regular papers presented in this volume were carefully reviewed and selected from 98 submissions. The papers cover topics such as categorical models and logics; language theory, automata, and games; modal, spatial, and temporal logics; type theory and proof theory; concurrency theory and process calculi; rewriting theory; semantics of programming languages; program analysis, correctness, transformation, and verification; logics of programming; software specification and refinement; models of concurrent, reactive, stochastic, distributed, hybrid, and mobile systems; emerging models of computation; logical aspects of computational complexity; models of software security; and logical foundations of data bases.

    Concrete process algebra

    Get PDF

    Introducing Asynchronicity to Probabilistic Hyperproperties

    Full text link
    Probabilistic hyperproperties express probabilistic relations between different executions of systems with uncertain behavior. HyperPCTL allows to formalize such properties, where quantification over probabilistic schedulers resolves potential non-determinism. In this paper we propose an extension named AHyperPCTL to additionally introduce asynchronicity between the observed executions by quantifying over stutter-schedulers, which may randomly decide to delay scheduler decisions by idling. To our knowledge, this is the first asynchronous extension of a probabilistic branching-time hyperlogic. We show that AHyperPCTL can express interesting information-flow security policies, and propose a model checking algorithm for a decidable fragment.Comment: to be published in the Proceedings of QEST 202

    A temporal logic for micro- and macro-step-based real-time systems: Foundations and applications

    Get PDF
    Many systems include components interacting with each other that evolve at possibly very different speeds. To deal with this situation many formal models adopt the abstraction of “zero-time transitions”, which do not consume time. These, however, have several drawbacks in terms of naturalness and logic consistency, as a system is modeled to be in different states at the same time. We propose a novel approach that exploits concepts from non-standard analysis and pairs them with the traditional “next” operator of temporal logic to introduce a notion of micro- and macro-steps; our approach is enacted in an extension of the TRIO metric temporal logic, called X-TRIO. We study the expressiveness and decidability properties of the new logic. Decidability is achieved through translation of a meaningful subset of X-TRIO into Linear Temporal Logic, a traditional way to support automated verification. We illustrate the usefulness and the generality of our approach by applying it to provide a formal semantics of timed Petri nets, which allows for their automated verification. We also give an overview of a formal semantics of Stateflow/Simulink diagrams, defined in terms of X-TRIO, which has been applied to the automated verification of a robotic cell

    Dagstuhl News January - December 2001

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic
    corecore