11,800 research outputs found

    Fuzzy Description Logics with General Concept Inclusions

    Get PDF
    Description logics (DLs) are used to represent knowledge of an application domain and provide standard reasoning services to infer consequences of this knowledge. However, classical DLs are not suited to represent vagueness in the description of the knowledge. We consider a combination of DLs and Fuzzy Logics to address this task. In particular, we consider the t-norm-based semantics for fuzzy DLs introduced by Hájek in 2005. Since then, many tableau algorithms have been developed for reasoning in fuzzy DLs. Another popular approach is to reduce fuzzy ontologies to classical ones and use existing highly optimized classical reasoners to deal with them. However, a systematic study of the computational complexity of the different reasoning problems is so far missing from the literature on fuzzy DLs. Recently, some of the developed tableau algorithms have been shown to be incorrect in the presence of general concept inclusion axioms (GCIs). In some fuzzy DLs, reasoning with GCIs has even turned out to be undecidable. This work provides a rigorous analysis of the boundary between decidable and undecidable reasoning problems in t-norm-based fuzzy DLs, in particular for GCIs. Existing undecidability proofs are extended to cover large classes of fuzzy DLs, and decidability is shown for most of the remaining logics considered here. Additionally, the computational complexity of reasoning in fuzzy DLs with semantics based on finite lattices is analyzed. For most decidability results, tight complexity bounds can be derived

    Towards a Proof Theory of G\"odel Modal Logics

    Full text link
    Analytic proof calculi are introduced for box and diamond fragments of basic modal fuzzy logics that combine the Kripke semantics of modal logic K with the many-valued semantics of G\"odel logic. The calculi are used to establish completeness and complexity results for these fragments

    Complexity of fuzzy answer set programming under Łukasiewicz semantics

    Get PDF
    Fuzzy answer set programming (FASP) is a generalization of answer set programming (ASP) in which propositions are allowed to be graded. Little is known about the computational complexity of FASP and almost no techniques are available to compute the answer sets of a FASP program. In this paper, we analyze the computational complexity of FASP under Łukasiewicz semantics. In particular we show that the complexity of the main reasoning tasks is located at the first level of the polynomial hierarchy, even for disjunctive FASP programs for which reasoning is classically located at the second level. Moreover, we show a reduction from reasoning with such FASP programs to bilevel linear programming, thus opening the door to practical applications. For definite FASP programs we can show P-membership. Surprisingly, when allowing disjunctions to occur in the body of rules – a syntactic generalization which does not affect the expressivity of ASP in the classical case – the picture changes drastically. In particular, reasoning tasks are then located at the second level of the polynomial hierarchy, while for simple FASP programs, we can only show that the unique answer set can be found in pseudo-polynomial time. Moreover, the connection to an existing open problem about integer equations suggests that the problem of fully characterizing the complexity of FASP in this more general setting is not likely to have an easy solution

    First-order Nilpotent Minimum Logics: first steps

    Full text link
    Following the lines of the analysis done in [BPZ07, BCF07] for first-order G\"odel logics, we present an analogous investigation for Nilpotent Minimum logic NM. We study decidability and reciprocal inclusion of various sets of first-order tautologies of some subalgebras of the standard Nilpotent Minimum algebra. We establish a connection between the validity in an NM-chain of certain first-order formulas and its order type. Furthermore, we analyze axiomatizability, undecidability and the monadic fragments.Comment: In this version of the paper the presentation has been improved. The introduction section has been rewritten, and many modifications have been done to improve the readability; moreover, numerous references have been added. Concerning the technical side, some proofs has been shortened or made more clear, but the mathematical content is substantially the same of the previous versio
    corecore