107,196 research outputs found

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    A Computable Economist’s Perspective on Computational Complexity

    Get PDF
    A computable economist's view of the world of computational complexity theory is described. This means the model of computation underpinning theories of computational complexity plays a central role. The emergence of computational complexity theories from diverse traditions is emphasised. The unifications that emerged in the modern era was codified by means of the notions of efficiency of computations, non-deterministic computations, completeness, reducibility and verifiability - all three of the latter concepts had their origins on what may be called 'Post's Program of Research for Higher Recursion Theory'. Approximations, computations and constructions are also emphasised. The recent real model of computation as a basis for studying computational complexity in the domain of the reals is also presented and discussed, albeit critically. A brief sceptical section on algorithmic complexity theory is included in an appendix

    Generalizations of the Recursion Theorem

    Get PDF
    We consider two generalizations of the recursion theorem, namely Visser's ADN theorem and Arslanov's completeness criterion, and we prove a joint generalization of these theorems

    Do Hard SAT-Related Reasoning Tasks Become Easier in the Krom Fragment?

    Full text link
    Many reasoning problems are based on the problem of satisfiability (SAT). While SAT itself becomes easy when restricting the structure of the formulas in a certain way, the situation is more opaque for more involved decision problems. We consider here the CardMinSat problem which asks, given a propositional formula ϕ\phi and an atom xx, whether xx is true in some cardinality-minimal model of ϕ\phi. This problem is easy for the Horn fragment, but, as we will show in this paper, remains Θ2\Theta_2-complete (and thus NP\mathrm{NP}-hard) for the Krom fragment (which is given by formulas in CNF where clauses have at most two literals). We will make use of this fact to study the complexity of reasoning tasks in belief revision and logic-based abduction and show that, while in some cases the restriction to Krom formulas leads to a decrease of complexity, in others it does not. We thus also consider the CardMinSat problem with respect to additional restrictions to Krom formulas towards a better understanding of the tractability frontier of such problems
    corecore