255 research outputs found

    Quadruple Neutrosophic Theory And Applications Volume I

    Get PDF
    Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent information. Neutrosophic set approaches are suitable to modeling problems with uncertainty, indeterminacy and inconsistent information in which human knowledge is necessary, and human evaluation is needed. Neutrosophic set theory firstly proposed in 1998 by Florentin Smarandache, who also developed the concept of single valued neutrosophic set, oriented towards real world scientific and engineering applications. Since then, the single valued neutrosophic set theory has been extensively studied in books and monographs introducing neutrosophic sets and its applications, by many authors around the world. Also, an international journal - Neutrosophic Sets and Systems started its journey in 2013. Smarandache introduce for the first time the neutrosophic quadruple numbers (of the form + + + ) and the refined neutrosophic quadruple numbers

    Characterisation Theorems for Weighted Tree Automaton Models

    Get PDF
    In this thesis, we investigate different theoretical questions concerning weighted automata models over tree-like input structures. First, we study exact and approximated determinisation and then, we turn to Kleene-like and Büchi-like characterisations. We consider multiple weighted automata models, including weighted tree automata over semirings (Chapters 3 and 4), weighted forest automata over M-monoids (Chapter 5), and rational weighted tree languages with storage (Chapter 6). For an explanation as to why the last class can be considered as a weighted automaton model, we refer to page 188 of the thesis. We will now summarise the main contributions of the thesis. In Chapter 3, we focus on the determinisation of weighted tree automata and present our determinisation framework, called M-sequentialisation, which can model different notions of determinisation from the existing literature. Then, we provide a positive M-sequentialisation result for the case of additively idempotent semirings or finitely M-ambiguous weighted tree automata. Another important contribution of Chapter 3 is Theorem 77, where we provide a blueprint theorem that can be used to find determini- sation results for more classes of semirings and weighted tree automata easily. In fact, instead of repeating an entire determinisation construction, Theorem 77 allows us to prove a determinisation result by finding certain finite equivalence relations. This is a very potent tool for future research in the area of determinisation. In Chapter 4, we move from exact determinisation towards approximate determini- sation. We lift the formalisms and the main results from one approach from the literature from the word case to the tree case. This successfully results in an approximated determinisation construction for weighted tree automata over the tropical semiring. We provide a formal mathematical description of the approximated determinisation construction, rather than an algorithmic description as found in the related approach from the literature. In Chapter 5, we turn away from determinisation and instead consider Kleene-like and Büchi-like characterisations of weighted recognisability. We introduce weighted forest automata over M-monoids, which are a generalisation of weighted tree automata over M-monoids and weighted forest automata over semirings. Then, we prove that our recognisable weighted forest languages can be decomposed into a finite product of recognisable weighted tree languages. We also prove that the initial algebra semantic and the run semantic for weighted forest automata are equivalent under certain conditions. Lastly, we define rational forest expressions and forest M-expressions and and prove that the classes of languages generated by these formalisms coincide with recognisable weighted forest languages under certain conditions. In Chapter 6, we consider rational weighted tree languages with storage, where the storage is introduced by composing rational weighted tree languages without storage with a storage map. It has been proven in the literature that rational weighted tree languages with storage are closed under the rational operations. In Chapter 6, we provide alternative proofs of these closure properties. In fact, we prove that our way of introducing storage to rational weighted tree languages preserves the closure properties from rational weighted tree languages without storage.:1 Introduction 2 Preliminaries 2.1 Languages 2.2 WeightedLanguages 2.3 Weighted Tree Automata 3 A Unifying Framework for the Determinisation of Weighted Tree Automata 3.1 Introduction 3.2 Preliminaries 3.3 Factorisation in Monoids 3.3.1 Ordering Multisets over Monoids 3.3.2 Cayley Graph and Cayley Distance 3.3.3 Divisors and Rests 3.3.4 Factorisation Properties 3.4 Weighted Tree Automata over M_fin(M) and the Twinning Property 3.4.1 Weighted Tree Automata over M_fin(M) 3.4.2 The Twinning Property 3.5 Sequentialisation of Weighted Tree Automata over M_fin(M) 3.5.1 The Sequentialisation Construction 3.5.2 The Finitely R-Ambiguous Case 3.6 Relating WTA over M_fin(M) and WTA over S 3.7 M-Sequentialisation of Weighted Tree Automata 3.7.1 Accumulation of D_B 3.7.2 M-Sequentialisation Results 3.8 Comparison of our Results to the Literature 3.8.1 Determinisation of Unweighted Tree Automata 3.8.2 The Free Monoid Case 3.8.3 The Group Case 3.8.4 The Extremal Case 3.9 Conclusion 4 Approximated Determinisation of Weighted Tree Automata 125 4.1 Introduction 4.2 Preliminaries 4.3 Approximated Determinisation 4.3.1 The Approximated Determinisation Construction 4.3.2 Correctness of the Construction 4.4 The Approximated Twinning Property 4.4.1 Implications for Approximated Determinisability 4.4.2 Decidability of the Twinning Property 4.5 Conclusion 5 Kleene and Büchi Theorems for Weighted Forest Languages over M-Monoids 5.1 Introduction 5.2 Preliminaries 5.3 WeightedForestAutomata 5.3.1 Forests 5.3.2 WeightedForestAutomata 5.3.3 Rectangularity 5.3.4 I-recognisable is R-recognisable 5.4 Kleene’s Theorem 5.4.1 Kleene’s Theorem for Trees 5.4.2 Kleene’s Theorem for Forests 5.4.3 An Inductive Approach 5.5 Büchi’s Theorem 5.5.1 Büchi’s Theorem for Trees 5.5.2 Büchi’s Theorem for Forests 5.6 Conclusion 6 Rational Weighted Tree Languages with Storage 6.1 Introduction 6.2 Preliminaries 6.3 Rational Weighted Tree Languages with Storage 6.4 The Kleene-Goldstine Theorem 6.5 Closure of Rat(S¢,Σ,S) under Rational Operations 6.5.1 Top-Concatenation, Scalar Multiplication, and Sum 6.5.2 α-Concatenation 6.5.3 α-Kleene Star 6.6 Conclusion 7 Outlook Reference

    Full Issue

    Get PDF

    On beta-Plurality Points in Spatial Voting Games

    Get PDF
    Let VV be a set of nn points in Rd\mathbb{R}^d, called voters. A point pRdp\in \mathbb{R}^d is a plurality point for VV when the following holds: for every qRdq\in\mathbb{R}^d the number of voters closer to pp than to qq is at least the number of voters closer to qq than to pp. Thus, in a vote where each vVv\in V votes for the nearest proposal (and voters for which the proposals are at equal distance abstain), proposal pp will not lose against any alternative proposal qq. For most voter sets a plurality point does not exist. We therefore introduce the concept of β\beta-plurality points, which are defined similarly to regular plurality points except that the distance of each voter to pp (but not to qq) is scaled by a factor β\beta, for some constant 0<β10<\beta\leq 1. We investigate the existence and computation of β\beta-plurality points, and obtain the following. * Define \beta^*_d := \sup \{ \beta : \text{any finite multiset Vin in \mathbb{R}^dadmitsa admits a \beta-plurality point} \}. We prove that β2=3/2\beta^*_2 = \sqrt{3}/2, and that 1/dβd3/21/\sqrt{d} \leq \beta^*_d \leq \sqrt{3}/2 for all d3d\geq 3. * Define \beta(p, V) := \sup \{ \beta : \text{pisa is a \betapluralitypointfor-plurality point for V}\}. Given a voter set VR2V \in \mathbb{R}^2, we provide an algorithm that runs in O(nlogn)O(n \log n) time and computes a point pp such that β(p,V)β2\beta(p, V) \geq \beta^*_2. Moreover, for d2d\geq 2 we can compute a point pp with β(p,V)1/d\beta(p,V) \geq 1/\sqrt{d} in O(n)O(n) time. * Define \beta(V) := \sup \{ \beta : \text{Vadmitsa admits a \beta-plurality point}\}. We present an algorithm that, given a voter set VV in Rd\mathbb{R}^d, computes an (1ε)β(V)(1-\varepsilon)\cdot \beta(V) plurality point in time O(n2ε3d2lognεd1log21ε)O(\frac{n^2}{\varepsilon^{3d-2}} \cdot \log \frac{n}{\varepsilon^{d-1}} \cdot \log^2 \frac {1}{\varepsilon}).Comment: 21 pages, 10 figures, SoCG'2

    Handling metadata in the scope of coreference detection in data collections

    Get PDF

    Foundations of Software Science and Computation Structures

    Get PDF
    This open access book constitutes the proceedings of the 24th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 28 regular papers presented in this volume were carefully reviewed and selected from 88 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems

    Provenance Circuits for Trees and Treelike Instances (Extended Version)

    Full text link
    Query evaluation in monadic second-order logic (MSO) is tractable on trees and treelike instances, even though it is hard for arbitrary instances. This tractability result has been extended to several tasks related to query evaluation, such as counting query results [3] or performing query evaluation on probabilistic trees [10]. These are two examples of the more general problem of computing augmented query output, that is referred to as provenance. This article presents a provenance framework for trees and treelike instances, by describing a linear-time construction of a circuit provenance representation for MSO queries. We show how this provenance can be connected to the usual definitions of semiring provenance on relational instances [20], even though we compute it in an unusual way, using tree automata; we do so via intrinsic definitions of provenance for general semirings, independent of the operational details of query evaluation. We show applications of this provenance to capture existing counting and probabilistic results on trees and treelike instances, and give novel consequences for probability evaluation.Comment: 48 pages. Presented at ICALP'1

    The 4th Conference of PhD Students in Computer Science

    Get PDF
    corecore