3,571 research outputs found

    Induced subgraphs and tree decompositions VI. Graphs with 2-cutsets

    Full text link
    This paper continues a series of papers investigating the following question: which hereditary graph classes have bounded treewidth? We call a graph tt-clean if it does not contain as an induced subgraph the complete graph KtK_t, the complete bipartite graph Kt,tK_{t, t}, subdivisions of a (t×t)(t \times t)-wall, and line graphs of subdivisions of a (t×t)(t \times t)-wall. It is known that graphs with bounded treewidth must be tt-clean for some tt; however, it is not true that every tt-clean graph has bounded treewidth. In this paper, we show that three types of cutsets, namely clique cutsets, 2-cutsets, and 1-joins, interact well with treewidth and with each other, so graphs that are decomposable by these cutsets into basic classes of bounded treewidth have bounded treewidth. We apply this result to two hereditary graph classes, the class of (ISK4ISK_4, wheel)-free graphs and the class of graphs with no cycle with a unique chord. These classes were previously studied and decomposition theorems were obtained for both classes. Our main results are that tt-clean (ISK4ISK_4, wheel)-free graphs have bounded treewidth and that tt-clean graphs with no cycle with a unique chord have bounded treewidth

    Product structure of graph classes with bounded treewidth

    Full text link
    We show that many graphs with bounded treewidth can be described as subgraphs of the strong product of a graph with smaller treewidth and a bounded-size complete graph. To this end, define the "underlying treewidth" of a graph class G\mathcal{G} to be the minimum non-negative integer cc such that, for some function ff, for every graph GG{G \in \mathcal{G}} there is a graph HH with tw(H)c{\text{tw}(H) \leq c} such that GG is isomorphic to a subgraph of HKf(tw(G)){H \boxtimes K_{f(\text{tw}(G))}}. We introduce disjointed coverings of graphs and show they determine the underlying treewidth of any graph class. Using this result, we prove that the class of planar graphs has underlying treewidth 3; the class of Ks,tK_{s,t}-minor-free graphs has underlying treewidth ss (for tmax{s,3}{t \geq \max\{s,3\}}); and the class of KtK_t-minor-free graphs has underlying treewidth t2{t-2}. In general, we prove that a monotone class has bounded underlying treewidth if and only if it excludes some fixed topological minor. We also study the underlying treewidth of graph classes defined by an excluded subgraph or excluded induced subgraph. We show that the class of graphs with no HH subgraph has bounded underlying treewidth if and only if every component of HH is a subdivided star, and that the class of graphs with no induced HH subgraph has bounded underlying treewidth if and only if every component of HH is a star

    EPG-representations with small grid-size

    Full text link
    In an EPG-representation of a graph GG each vertex is represented by a path in the rectangular grid, and (v,w)(v,w) is an edge in GG if and only if the paths representing vv an ww share a grid-edge. Requiring paths representing edges to be x-monotone or, even stronger, both x- and y-monotone gives rise to three natural variants of EPG-representations, one where edges have no monotonicity requirements and two with the aforementioned monotonicity requirements. The focus of this paper is understanding how small a grid can be achieved for such EPG-representations with respect to various graph parameters. We show that there are mm-edge graphs that require a grid of area Ω(m)\Omega(m) in any variant of EPG-representations. Similarly there are pathwidth-kk graphs that require height Ω(k)\Omega(k) and area Ω(kn)\Omega(kn) in any variant of EPG-representations. We prove a matching upper bound of O(kn)O(kn) area for all pathwidth-kk graphs in the strongest model, the one where edges are required to be both x- and y-monotone. Thus in this strongest model, the result implies, for example, O(n)O(n), O(nlogn)O(n \log n) and O(n3/2)O(n^{3/2}) area bounds for bounded pathwidth graphs, bounded treewidth graphs and all classes of graphs that exclude a fixed minor, respectively. For the model with no restrictions on the monotonicity of the edges, stronger results can be achieved for some graph classes, for example an O(n)O(n) area bound for bounded treewidth graphs and O(nlog2n)O(n \log^2 n) bound for graphs of bounded genus.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Cliquewidth and dimension

    Full text link
    We prove that every poset with bounded cliquewidth and with sufficiently large dimension contains the standard example of dimension kk as a subposet. This applies in particular to posets whose cover graphs have bounded treewidth, as the cliquewidth of a poset is bounded in terms of the treewidth of the cover graph. For the latter posets, we prove a stronger statement: every such poset with sufficiently large dimension contains the Kelly example of dimension kk as a subposet. Using this result, we obtain a full characterization of the minor-closed graph classes C\mathcal{C} such that posets with cover graphs in C\mathcal{C} have bounded dimension: they are exactly the classes excluding the cover graph of some Kelly example. Finally, we consider a variant of poset dimension called Boolean dimension, and we prove that posets with bounded cliquewidth have bounded Boolean dimension. The proofs rely on Colcombet's deterministic version of Simon's factorization theorem, which is a fundamental tool in formal language and automata theory, and which we believe deserves a wider recognition in structural and algorithmic graph theory

    On the expressive power of permanents and perfect matchings of matrices of bounded pathwidth/cliquewidth

    Get PDF
    Some 25 years ago Valiant introduced an algebraic model of computation in order to study the complexity of evaluating families of polynomials. The theory was introduced along with the complexity classes VP and VNP which are analogues of the classical classes P and NP. Families of polynomials that are difficult to evaluate (that is, VNP-complete) includes the permanent and hamiltonian polynomials. In a previous paper the authors together with P. Koiran studied the expressive power of permanent and hamiltonian polynomials of matrices of bounded treewidth, as well as the expressive power of perfect matchings of planar graphs. It was established that the permanent and hamiltonian polynomials of matrices of bounded treewidth are equivalent to arithmetic formulas. Also, the sum of weights of perfect matchings of planar graphs was shown to be equivalent to (weakly) skew circuits. In this paper we continue the research in the direction described above, and study the expressive power of permanents, hamiltonians and perfect matchings of matrices that have bounded pathwidth or bounded cliquewidth. In particular, we prove that permanents, hamiltonians and perfect matchings of matrices that have bounded pathwidth express exactly arithmetic formulas. This is an improvement of our previous result for matrices of bounded treewidth. Also, for matrices of bounded weighted cliquewidth we show membership in VP for these polynomials.Comment: 21 page
    corecore