517 research outputs found

    Lower bounds on the number of realizations of rigid graphs

    Get PDF
    Computing the number of realizations of a minimally rigid graph is a notoriously difficult problem. Towards this goal, for graphs that are minimally rigid in the plane, we take advantage of a recently published algorithm, which is the fastest available method, although its complexity is still exponential. Combining computational results with the theory of constructing new rigid graphs by gluing, we give a new lower bound on the maximal possible number of (complex) realizations for graphs with a given number of vertices. We extend these ideas to rigid graphs in three dimensions and we derive similar lower bounds, by exploiting data from extensive Gr\"obner basis computations

    List Decoding Algorithm based on Voting in Groebner Bases for General One-Point AG Codes

    Get PDF
    We generalize the unique decoding algorithm for one-point AG codes over the Miura-Kamiya Cab curves proposed by Lee, Bras-Amor\'os and O'Sullivan (2012) to general one-point AG codes, without any assumption. We also extend their unique decoding algorithm to list decoding, modify it so that it can be used with the Feng-Rao improved code construction, prove equality between its error correcting capability and half the minimum distance lower bound by Andersen and Geil (2008) that has not been done in the original proposal except for one-point Hermitian codes, remove the unnecessary computational steps so that it can run faster, and analyze its computational complexity in terms of multiplications and divisions in the finite field. As a unique decoding algorithm, the proposed one is empirically and theoretically as fast as the BMS algorithm for one-point Hermitian codes. As a list decoding algorithm, extensive experiments suggest that it can be much faster for many moderate size/usual inputs than the algorithm by Beelen and Brander (2010). It should be noted that as a list decoding algorithm the proposed method seems to have exponential worst-case computational complexity while the previous proposals (Beelen and Brander, 2010; Guruswami and Sudan, 1999) have polynomial ones, and that the proposed method is expected to be slower than the previous proposals for very large/special inputs.Comment: Accepted for publication in J. Symbolic Computation. LaTeX2e article.cls, 42 pages, 4 tables, no figures. Ver. 6 added an illustrative example of the algorithm executio

    Computing periods of rational integrals

    Get PDF
    A period of a rational integral is the result of integrating, with respect to one or several variables, a rational function over a closed path. This work focuses particularly on periods depending on a parameter: in this case the period under consideration satisfies a linear differential equation, the Picard-Fuchs equation. I give a reduction algorithm that extends the Griffiths-Dwork reduction and apply it to the computation of Picard-Fuchs equations. The resulting algorithm is elementary and has been successfully applied to problems that were previously out of reach.Comment: To appear in Math. comp. Supplementary material at http://pierre.lairez.fr/supp/periods

    On the complexity of computing Gr\"obner bases for weighted homogeneous systems

    Get PDF
    Solving polynomial systems arising from applications is frequently made easier by the structure of the systems. Weighted homogeneity (or quasi-homogeneity) is one example of such a structure: given a system of weights W=(w_1,,w_n)W=(w\_{1},\dots,w\_{n}), WW-homogeneous polynomials are polynomials which are homogeneous w.r.t the weighted degree deg_W(X_1α_1,,X_nα_n)=w_iα_i\deg\_{W}(X\_{1}^{\alpha\_{1}},\dots,X\_{n}^{\alpha\_{n}}) = \sum w\_{i}\alpha\_{i}. Gr\"obner bases for weighted homogeneous systems can be computed by adapting existing algorithms for homogeneous systems to the weighted homogeneous case. We show that in this case, the complexity estimate for Algorithm~\F5 \left(\binom{n+\dmax-1}{\dmax}^{\omega}\right) can be divided by a factor (w_i)ω\left(\prod w\_{i} \right)^{\omega}. For zero-dimensional systems, the complexity of Algorithm~\FGLM nDωnD^{\omega} (where DD is the number of solutions of the system) can be divided by the same factor (w_i)ω\left(\prod w\_{i} \right)^{\omega}. Under genericity assumptions, for zero-dimensional weighted homogeneous systems of WW-degree (d_1,,d_n)(d\_{1},\dots,d\_{n}), these complexity estimates are polynomial in the weighted B\'ezout bound _i=1nd_i/_i=1nw_i\prod\_{i=1}^{n}d\_{i} / \prod\_{i=1}^{n}w\_{i}. Furthermore, the maximum degree reached in a run of Algorithm \F5 is bounded by the weighted Macaulay bound (d_iw_i)+w_n\sum (d\_{i}-w\_{i}) + w\_{n}, and this bound is sharp if we can order the weights so that w_n=1w\_{n}=1. For overdetermined semi-regular systems, estimates from the homogeneous case can be adapted to the weighted case. We provide some experimental results based on systems arising from a cryptography problem and from polynomial inversion problems. They show that taking advantage of the weighted homogeneous structure yields substantial speed-ups, and allows us to solve systems which were otherwise out of reach

    Predicting zero reductions in Gr\"obner basis computations

    Full text link
    Since Buchberger's initial algorithm for computing Gr\"obner bases in 1965 many attempts have been taken to detect zero reductions in advance. Buchberger's Product and Chain criteria may be known the most, especially in the installaton of Gebauer and M\"oller. A relatively new approach are signature-based criteria which were first used in Faug\`ere's F5 algorithm in 2002. For regular input sequences these criteria are known to compute no zero reduction at all. In this paper we give a detailed discussion on zero reductions and the corresponding syzygies. We explain how the different methods to predict them compare to each other and show advantages and drawbacks in theory and practice. With this a new insight into algebraic structures underlying Gr\"obner bases and their computations might be achieved.Comment: 25 pages, 3 figure
    corecore