68,792 research outputs found

    Difference Methods and Deferred Corrections for Ordinary Boundary Value Problems

    Get PDF
    Compact as possible difference schemes for systems of nth order equations are developed. Generalizations of the Mehrstellenverfahren and simple theoretically sound implementations of deferred corrections are given. It is shown that higher order systems are more efficiently solved as given rather than as reduced to larger lower order systems. Tables of coefficients to implement these methods are included and have been derived using symbolic computations

    Symmetry of Nodal Solutions for Singularly Perturbed Elliptic Problems on a Ball

    Get PDF
    In [40], it was shown that the following singularly perturbed Dirichlet problem \ep^2 \Delta u - u+ |u|^{p-1} u=0, \ \mbox{in} \ \Om,\] \[ u=0 \ \mbox{on} \ \partial \Om has a nodal solution u_\ep which has the least energy among all nodal solutions. Moreover, it is shown that u_\ep has exactly one local maximum point P_1^\ep with a positive value and one local minimum point P_2^\ep with a negative value and, as \ep \to 0, \varphi (P_1^\ep, P_2^\ep) \to \max_{ (P_1, P_2) \in \Om \times \Om } \varphi (P_1, P_2), where \varphi (P_1, P_2)= \min (\frac{|P_1-P_2}{2}, d(P_1, \partial \Om), d(P_2, \partial \Om)). The following question naturally arises: where is the {\bf nodal surface} \{ u_\ep (x)=0 \}? In this paper, we give an answer in the case of the unit ball \Om=B_1 (0). In particular, we show that for \epsilon sufficiently small, P_1^\ep, P_2^\ep and the origin must lie on a line. Without loss of generality, we may assume that this line is the x_1-axis. Then u_\ep must be even in x_j, j=2, ..., N, and odd in x_1. As a consequence, we show that \{ u_\ep (x)=0 \} = \{ x \in B_1 (0) | x_1=0 \}. Our proof is divided into two steps: first, by using the method of moving planes, we show that P_1^\ep, P_2^\ep and the origin must lie on the x_1-axis and u_\ep must be even in x_j, j=2, ..., N. Then, using the Liapunov-Schmidt reduction method, we prove the uniqueness of u_\ep (which implies the odd symmetry of u_\ep in x_1). Similar results are also proved for the problem with Neumann boundary conditions
    • ā€¦
    corecore