15,259 research outputs found

    Algorithmic Randomness as Foundation of Inductive Reasoning and Artificial Intelligence

    Full text link
    This article is a brief personal account of the past, present, and future of algorithmic randomness, emphasizing its role in inductive inference and artificial intelligence. It is written for a general audience interested in science and philosophy. Intuitively, randomness is a lack of order or predictability. If randomness is the opposite of determinism, then algorithmic randomness is the opposite of computability. Besides many other things, these concepts have been used to quantify Ockham's razor, solve the induction problem, and define intelligence.Comment: 9 LaTeX page

    Mesoscopic Mechanics

    Full text link
    This article is concerned with the existence, status and description of the so-called emergent phenomena believed to occur in certain principally planar electronic systems. In fact, two distinctly different if inseparable tasks are accomplished. First, a rigorous mathematical model is proposed of emergent character, which is conceptually bonded with Quantum Mechanics while apparently non-derivable from the many-body Schr\"{o}dinger equation. I call the resulting conceptual framework the Mesoscopic Mechanics (MeM). Its formulation is space-independent and comprises a nonlinear and holistic extension of the free electron model. Secondly, the question of relevancy of the proposed ``emergent mechanics" to the actually observed phenomena is discussed. In particular, I postulate a probabilistic interpretation, and indicate how the theory could be applied and verified by experiment. The Mesoscopic Mechanics proposed here has been deduced from the Nonlinear Maxwell Theory (NMT)--a classical in character nonlinear field theory. This latter theory has already been shown to provide a consistent phenomenological model of such phenomena as superconductivity, charge stripes, magnetic vortex lattice, and magnetic oscillations. The NMT, which arose from geometric considerations, has long been awaiting an explanation as to its ties with the fundamental principles. I believe the MeM provides at least a partial explanation to this effect.Comment: 20 pages, 2 figure

    Proving Quadratic Reciprocity: Explanation, Disagreement, Transparency and Depth

    Get PDF
    Gauss’s quadratic reciprocity theorem is among the most important results in the history of number theory. It’s also among the most mysterious: since its discovery in the late 18th century, mathematicians have regarded reciprocity as a deeply surprising fact in need of explanation. Intriguingly, though, there’s little agreement on how the theorem is best explained. Two quite different kinds of proof are most often praised as explanatory: an elementary argument that gives the theorem an intuitive geometric interpretation, due to Gauss and Eisenstein, and a sophisticated proof using algebraic number theory, due to Hilbert. Philosophers have yet to look carefully at such explanatory disagreements in mathematics. I do so here. According to the view I defend, there are two important explanatory virtues—depth and transparency—which different proofs (and other potential explanations) possess to different degrees. Although not mutually exclusive in principle, the packages of features associated with the two stand in some tension with one another, so that very deep explanations are rarely transparent, and vice versa. After developing the theory of depth and transparency and applying it to the case of quadratic reciprocity, I draw some morals about the nature of mathematical explanation

    Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 B.C.--2017) and another new proof

    Full text link
    In this article, we provide a comprehensive historical survey of 183 different proofs of famous Euclid's theorem on the infinitude of prime numbers. The author is trying to collect almost all the known proofs on infinitude of primes, including some proofs that can be easily obtained as consequences of some known problems or divisibility properties. Furthermore, here are listed numerous elementary proofs of the infinitude of primes in different arithmetic progressions. All the references concerning the proofs of Euclid's theorem that use similar methods and ideas are exposed subsequently. Namely, presented proofs are divided into 8 subsections of Section 2 in dependence of the methods that are used in them. {\bf Related new 14 proofs (2012-2017) are given in the last subsection of Section 2.} In the next section, we survey mainly elementary proofs of the infinitude of primes in different arithmetic progressions. Presented proofs are special cases of Dirichlet's theorem. In Section 4, we give a new simple "Euclidean's proof" of the infinitude of primes.Comment: 70 pages. In this extended third version of the article, 14 new proofs of the infnitude of primes are added (2012-2017

    Superfilters, Ramsey theory, and van der Waerden's Theorem

    Get PDF
    Superfilters are generalized ultrafilters, which capture the underlying concept in Ramsey theoretic theorems such as van der Waerden's Theorem. We establish several properties of superfilters, which generalize both Ramsey's Theorem and its variant for ultrafilters on the natural numbers. We use them to confirm a conjecture of Ko\v{c}inac and Di Maio, which is a generalization of a Ramsey theoretic result of Scheepers, concerning selections from open covers. Following Bergelson and Hindman's 1989 Theorem, we present a new simultaneous generalization of the theorems of Ramsey, van der Waerden, Schur, Folkman-Rado-Sanders, Rado, and others, where the colored sets can be much smaller than the full set of natural numbers.Comment: Among other things, the results of this paper imply (using its one-dimensional version) a higher-dimensional version of the Green-Tao Theorem on arithmetic progressions in the primes. The bibliography is now update

    Finitary and Infinitary Mathematics, the Possibility of Possibilities and the Definition of Probabilities

    Get PDF
    Some relations between physics and finitary and infinitary mathematics are explored in the context of a many-minds interpretation of quantum theory. The analogy between mathematical ``existence'' and physical ``existence'' is considered from the point of view of philosophical idealism. Some of the ways in which infinitary mathematics arises in modern mathematical physics are discussed. Empirical science has led to the mathematics of quantum theory. This in turn can be taken to suggest a picture of reality involving possible minds and the physical laws which determine their probabilities. In this picture, finitary and infinitary mathematics play separate roles. It is argued that mind, language, and finitary mathematics have similar prerequisites, in that each depends on the possibility of possibilities. The infinite, on the other hand, can be described but never experienced, and yet it seems that sets of possibilities and the physical laws which define their probabilities can be described most simply in terms of infinitary mathematics.Comment: 21 pages, plain TeX, related papers from http://www.poco.phy.cam.ac.uk/~mjd101
    • …
    corecore