13,920 research outputs found

    On the delivery robustness of train timetables with respect to production replanning possibilities

    Get PDF
    Measuring timetable robustness is a complex task. Previous efforts have mainly been focused on simulation studies or measurements of time supplements. However, these measurements don't capture the production flexibility of a timetable, which is essential for measuring the robustness with regard to the trains' commercial activity commitments, and also for merging the goals of robustness and efficiency. In this article we differentiate between production timetables and delivery timetables. A production timetable contains all stops, meetings and switch crossings, while a delivery timetable only contains stops for commercial activities. If a production timetable is constructed such that it can easily be replanned to cope with delays without breaking any commercial activity commitments it provides delivery robustness without compromising travel efficiency. Changing meeting locations is one of the replanning tools available during operation, and this paper presents a new framework for heuristically optimising a given production timetable with regard to the number of alternative meeting locations. Mixed integer programming is used to find two delivery feasible production solutions, one early and one late. The area between the two solutions represents alternative meeting locations and therefore also the replanning enabled robustness. A case study from Sweden demonstrates how the method can be used to develop better production timetables

    A Review of Trip Planning Systems.

    Get PDF
    This report reviews current information provision in all modes of transport and assesses the needs for and benefits of trip planning systems. The feasibility of trip planning systems is discussed given the current state of technology and information availability and supply. The review was stimulated by technological developments in telecommunications and information technology which are providing the possibility of a greatly enhanced quality of information to aid trip planning decisions. Amongst the conclusions reached were the following: Current information provision is considered deficient in many respects. Travellers are often unaware of alternative routes or services and many are unable to acquire adequate information from one source especially for multi-modal journeys. In addition, there is a lack of providing real time information where it is required (bus stops and train stations) and of effective interaction of static and real time information. Most of the projects, which integrate static and dynamic data, are single mode systems. Therefore there is a need for an integrated trip planning system which can inform and guide on all aspects of transport. Trip planning systems can provide assistance in trip planning (before and during the journey) using one or a number of modes of travel, taking into account travellers preferences and constraints, and effectively integrating static and dynamic data. Trip planning systems could adversely affect traffic demand as people who become aware of new opportunities might be encouraged to make more journeys. It could also affect travellers choice as a result of over-saturation of information, over-reaction to predictive information, and concentration on the same 'best' routes. However, it can be argued, based on existing evidence, that such a system can benefit travellers, and transport operators as well as the public sector responsible for executing transport policies. Travellers can benefit by obtaining adequate information to help them in making optimal decisions and reducing uncertainty and stress associated with travel. Public transport operators can benefit by making their services known to customers, leading to increased patronage. Public transport authorities can use the supply of information to execute their transport policies and exercise more control over traffic management

    An XML format for benchmarks in High School Timetabling

    Get PDF
    The High School Timetabling Problem is amongst the most widely used timetabling problems. This problem has varying structures in different high schools even within the same country or educational system. Due to lack of standard benchmarks and data formats this problem has been studied less than other timetabling problems in the literature. In this paper we describe the High School Timetabling Problem in several countries in order to find a common set of constraints and objectives. Our main goal is to provide exchangeable benchmarks for this problem. To achieve this we propose a standard data format suitable for different countries and educational systems, defined by an XML schema. The schema and datasets are available online

    Stochastic Improvement of Cyclic Railway Timetables

    Get PDF
    Real-time railway operations are subject to stochastic disturbances. However, a railway timetable is a deterministic plan. Thus a timetable should be designed in such a way that it can cope with the stochastic disturbances as well as possible. For that purpose, a timetable usually contains time supplements in several process times and buffer times between pairs of consecutive trains. This paper describes a Stochastic Optimization Model that can be used to allocate the time supplements and the buffer times in a given timetable in such a way that the timetable becomes maximally robust against stochastic disturbances. The Stochastic Optimization Model was tested on several instances of NS Reizigers, the main operator of passenger trains in the Netherlands. Moreover, a timetable that was computed by the model was operated in practice in a timetable experiment on the so-called Ć¢ā‚¬Å“ZaanlijnĆ¢ā‚¬. The results show that the average delays of trains can often be reduced significantly by applying relatively small modifications to a given timetable.Railway Timetabling;Stochastic Optimization;Robustness

    Cyclic transfers in school timetabling

    Get PDF
    In this paper we propose a neighbourhood structure based on sequential/cyclic moves and a cyclic transfer algorithm for the high school timetabling problem. This method enables execution of complex moves for improving an existing solution, while dealing with the challenge of exploring the neighbourhood efficiently. An improvement graph is used in which certain negative cycles correspond to the neighbours; these cycles are explored using a recursive method. We address the problem of applying large neighbourhood structure methods on problems where the cost function is not exactly the sum of independent cost functions, as it is in the set partitioning problem. For computational experiments we use four real world data sets for high school timetabling in the Netherlands and England.We present results of the cyclic transfer algorithm with different settings on these data sets. The costs decrease by 8ā€“28% if we use the cyclic transfers for local optimization compared to our initial solutions. The quality of the best initial solutions are comparable to the solutions found in practice by timetablers
    • ā€¦
    corecore