49,536 research outputs found

    Normal approximation of Random Gaussian Neural Networks

    Full text link
    In this paper we provide explicit upper bounds on some distances between the (law of the) output of a random Gaussian NN and (the law of) a random Gaussian vector. Our results concern both shallow random Gaussian neural networks with univariate output and fully connected and deep random Gaussian neural networks, with a rather general activation function. The upper bounds show how the widths of the layers, the activation functions and other architecture parameters affect the Gaussian approximation of the ouput. Our techniques, relying on Stein's method and integration by parts formulas for the Gaussian law, yield estimates on distances which are indeed integral probability metrics, and include the total variation and the convex distances. These latter metrics are defined by testing against indicator functions of suitable measurable sets, and so allow for accurate estimates of the probability that the output is localized in some region of the space. Such estimates have a significant interest both from a practitioner's and a theorist's perspective

    Deep Sufficient Representation Learning via Mutual Information

    Full text link
    We propose a mutual information-based sufficient representation learning (MSRL) approach, which uses the variational formulation of the mutual information and leverages the approximation power of deep neural networks. MSRL learns a sufficient representation with the maximum mutual information with the response and a user-selected distribution. It can easily handle multi-dimensional continuous or categorical response variables. MSRL is shown to be consistent in the sense that the conditional probability density function of the response variable given the learned representation converges to the conditional probability density function of the response variable given the predictor. Non-asymptotic error bounds for MSRL are also established under suitable conditions. To establish the error bounds, we derive a generalized Dudley's inequality for an order-two U-process indexed by deep neural networks, which may be of independent interest. We discuss how to determine the intrinsic dimension of the underlying data distribution. Moreover, we evaluate the performance of MSRL via extensive numerical experiments and real data analysis and demonstrate that MSRL outperforms some existing nonlinear sufficient dimension reduction methods.Comment: 43 pages, 6 figures and 5 table

    Empirical Bounds on Linear Regions of Deep Rectifier Networks

    Full text link
    We can compare the expressiveness of neural networks that use rectified linear units (ReLUs) by the number of linear regions, which reflect the number of pieces of the piecewise linear functions modeled by such networks. However, enumerating these regions is prohibitive and the known analytical bounds are identical for networks with same dimensions. In this work, we approximate the number of linear regions through empirical bounds based on features of the trained network and probabilistic inference. Our first contribution is a method to sample the activation patterns defined by ReLUs using universal hash functions. This method is based on a Mixed-Integer Linear Programming (MILP) formulation of the network and an algorithm for probabilistic lower bounds of MILP solution sets that we call MIPBound, which is considerably faster than exact counting and reaches values in similar orders of magnitude. Our second contribution is a tighter activation-based bound for the maximum number of linear regions, which is particularly stronger in networks with narrow layers. Combined, these bounds yield a fast proxy for the number of linear regions of a deep neural network.Comment: AAAI 202

    Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review

    Get PDF
    The paper characterizes classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage
    corecore