62,573 research outputs found

    Hysteresis at low Reynolds number: the onset of 2D vortex shedding

    Full text link
    Hysteresis has been observed in a study of the transition between laminar flow and vortex shedding in a quasi-two dimensional system. The system is a vertical, rapidly flowing soap film which is penetrated by a rod oriented perpendicular to the film plane. Our experiments show that the transition from laminar flow to a periodic K\'arm\'an vortex street can be hysteretic, i.e. vortices can survive at velocities lower than the velocity needed to generate them.Comment: RevTeX file 4 pages + 5 (encapsulated postscript) figures. to appear in Phys.Rev.E, Rapid Communicatio

    Effect of disjoining pressure in a thin film equation with\ud non-uniform forcing

    Get PDF
    We explore the effect of disjoining pressure on a thin film equation in the presence of a non-uniform body force, motivated by a model describing the reverse draining of a magnetic film. To this end, we use a combination of numerical investigations and analytical considerations. The disjoining pressure has a regularizing influence on the evolution of the system and appears to select a single steady-state solution for fixed height boundary conditions; this is in contrast with the existence of a continuum of locally attracting solutions that exist in the absence of disjoining pressure for the same boundary conditions. We numerically implement matched asymptotics expansions to construct equilibrium solutions and also investigate how they behave as the disjoining pressure is sent to zero. Finally, we consider the effect of the competition between forcing and disjoining pressure on the coarsening dynamics of the thin film for fixed contact angle boundary conditions

    Profit-oriented disassembly-line balancing

    Get PDF
    As product and material recovery has gained importance, disassembly volumes have increased, justifying construction of disassembly lines similar to assembly lines. Recent research on disassembly lines has focused on complete disassembly. Unlike assembly, the current industry practice involves partial disassembly with profit-maximization or cost-minimization objectives. Another difference between assembly and disassembly is that disassembly involves additional precedence relations among tasks due to processing alternatives or physical restrictions. In this study, we define and solve the profit-oriented partial disassembly-line balancing problem. We first characterize different types of precedence relations in disassembly and propose a new representation scheme that encompasses all these types. We then develop the first mixed integer programming formulation for the partial disassembly-line balancing problem, which simultaneously determines (1) the parts whose demand is to be fulfilled to generate revenue, (2) the tasks that will release the selected parts under task and station costs, (3) the number of stations that will be opened, (4) the cycle time, and (5) the balance of the disassembly line, i.e. the feasible assignment of selected tasks to stations such that various types of precedence relations are satisfied. We propose a lower and upper-bounding scheme based on linear programming relaxation of the formulation. Computational results show that our approach provides near optimal solutions for small problems and is capable of solving larger problems with up to 320 disassembly tasks in reasonable time

    Soap films as two-dimensional fluids: Diffusion and flow fields

    Full text link
    We observe tracer particles diffusing in soap films to measure the two-dimensional (2D) viscous properties of the films. We make soap films with a variety of water-glycerol mixtures and of differing thicknesses. The single-particle diffusivity relates closely to parameters of the film (such as thickness hh) for thin films, but the relation breaks down for thicker films. Notably, the diffusivity is faster than expected for thicker films, with the transition at h/d=5.2±0.9h/d = 5.2 \pm 0.9 using the tracer particle diameter dd. This indicates a transition from purely 2D diffusion to diffusion that is more three-dimensional. Additionally, we measure larger length scale flow fields from correlated particle motions and find good agreement with what is expected from theory of 2D fluids for all our films, thin and thick. We measure the effective 2D viscosity of a soap film using single-particle diffusivity measurements in thin films, and using the two-particle correlation measurements in all films

    Surfactant films in lyotropic lamellar (and related) phases: Fluctuations and interactions

    Full text link
    The analogy between soap films thinning under border capillary suction and lamellar stacks of surfactant bilayers dehydrated by osmotic stress is explored, in particular in the highly dehydrated limit where the soap film becomes a Newton black film. The nature of short-range repulsive interactions between surfactant-covered interfaces and acting across water channels in both cases will be discussed.Comment: 29 pages, 11 figures. Accepted for publication (2017/06/21), Advances in Colloid and Interface Scienc

    Quasi-steady vortical structures in vertically vibrating soap �lms

    Get PDF
    An analysis of the quasi-steady streaming of the liquid in a vertically vibrated horizontal soap film is reported. The air around the soap film is seen to play a variety of roles: it transmits normal and tangential oscillatory stresses to the film, damps out Marangoni waves, and forces non-oscillatory deflection of the film and tangential motion of the liquid. Non-oscillatory volume forcing originating inside the liquid is also analysed. This forcing dominates the quasi-steady streaming when the excitation frequency is close to the eigenfrequency of a Marangoni mode of the soap film, while both volume forcing in the liquid and surface forcing of the gas on the liquid are important when no Marangoni mode resonates. Different manners by which the combined forcings can induce quasi-steady streaming motion are discussed and some numerical simulations of the quasi-steady liquid flow are presented

    Evaluation of proposed Skylab and SSP soap products

    Get PDF
    Three personal hygiene cleansing agents and one laundry detergent (sodium dodecyl benzene sulfonate), which are all candidates for use on long-duration space missions, were evaluated in terms of dermatological effects on human subjects and effects on microbiological species. None of the four materials exhibited adverse dermatological effects from either skin patch tests of two weeks duration or a simulated Skylab personal hygiene regimen of up to four weeks duration. No significant alterations in skin microflora during the use regimen were found. None of the four materials were found to serve as microbiological support media for the species tested, but a species of air-borne mold was observed to grow rapidly in a neutralized aqueous solution. None of the candidate agents was found to be strongly biocidal

    Cuscuton: A Causal Field Theory with an Infinite Speed of Sound

    Full text link
    We introduce a model of scalar field dark energy, Cuscuton, which can be realized as the incompressible (or infinite speed of sound) limit of a scalar field theory with a non-canonical kinetic term (or k-essence). Even though perturbations of Cuscuton propagate superluminally, we show that they have a locally degenerate phase space volume (or zero entropy), implying that they cannot carry any microscopic information, and thus the theory is causal. Even coupling to ordinary scalar fields cannot lead to superluminal signal propagation. Furthermore, we show that the family of constant field hypersurfaces are the family of Constant Mean Curvature (CMC) hypersurfaces, which are the analogs of soap films (or soap bubbles) in a Euclidian space. This enables us to find the most general solution in 1+1 dimensions, whose properties motivate conjectures for global degeneracy of the phase space in higher dimensions. Finally, we show that the Cuscuton action can model the continuum limit of the evolution of a field with discrete degrees of freedom and argue why it is protected against quantum corrections at low energies. While this paper mainly focuses on interesting features of Cuscuton in a Minkowski spacetime, a companion paper (astro-ph/0702002) examines cosmology with Cuscuton dark energy.Comment: 11 pages, 1 figure, added discussion of "coupled cuscuton", matches the published version in PR
    • …
    corecore