2,385 research outputs found

    ILP Models

    Get PDF

    Modelli, English Version

    Get PDF

    Bilu-Linial Stable Instances of Max Cut and Minimum Multiway Cut

    Full text link
    We investigate the notion of stability proposed by Bilu and Linial. We obtain an exact polynomial-time algorithm for γ\gamma-stable Max Cut instances with γclognloglogn\gamma \geq c\sqrt{\log n}\log\log n for some absolute constant c>0c > 0. Our algorithm is robust: it never returns an incorrect answer; if the instance is γ\gamma-stable, it finds the maximum cut, otherwise, it either finds the maximum cut or certifies that the instance is not γ\gamma-stable. We prove that there is no robust polynomial-time algorithm for γ\gamma-stable instances of Max Cut when γ<αSC(n/2)\gamma < \alpha_{SC}(n/2), where αSC\alpha_{SC} is the best approximation factor for Sparsest Cut with non-uniform demands. Our algorithm is based on semidefinite programming. We show that the standard SDP relaxation for Max Cut (with 22\ell_2^2 triangle inequalities) is integral if γD221(n)\gamma \geq D_{\ell_2^2\to \ell_1}(n), where D221(n)D_{\ell_2^2\to \ell_1}(n) is the least distortion with which every nn point metric space of negative type embeds into 1\ell_1. On the negative side, we show that the SDP relaxation is not integral when γ<D221(n/2)\gamma < D_{\ell_2^2\to \ell_1}(n/2). Moreover, there is no tractable convex relaxation for γ\gamma-stable instances of Max Cut when γ<αSC(n/2)\gamma < \alpha_{SC}(n/2). That suggests that solving γ\gamma-stable instances with γ=o(logn)\gamma =o(\sqrt{\log n}) might be difficult or impossible. Our results significantly improve previously known results. The best previously known algorithm for γ\gamma-stable instances of Max Cut required that γcn\gamma \geq c\sqrt{n} (for some c>0c > 0) [Bilu, Daniely, Linial, and Saks]. No hardness results were known for the problem. Additionally, we present an algorithm for 4-stable instances of Minimum Multiway Cut. We also study a relaxed notion of weak stability.Comment: 24 page

    Sum Coloring : New upper bounds for the chromatic strength

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is derived from the Graph Coloring Problem (GCP) by associating a weight to each color. The aim of MSCP is to find a coloring solution of a graph such that the sum of color weights is minimum. MSCP has important applications in fields such as scheduling and VLSI design. We propose in this paper new upper bounds of the chromatic strength, i.e. the minimum number of colors in an optimal solution of MSCP, based on an abstraction of all possible colorings of a graph called motif. Experimental results on standard benchmarks show that our new bounds are significantly tighter than the previous bounds in general, allowing to reduce substantially the search space when solving MSCP .Comment: pre-prin
    corecore