3,160 research outputs found

    Opportunistic Self Organizing Migrating Algorithm for Real-Time Dynamic Traveling Salesman Problem

    Full text link
    Self Organizing Migrating Algorithm (SOMA) is a meta-heuristic algorithm based on the self-organizing behavior of individuals in a simulated social environment. SOMA performs iterative computations on a population of potential solutions in the given search space to obtain an optimal solution. In this paper, an Opportunistic Self Organizing Migrating Algorithm (OSOMA) has been proposed that introduces a novel strategy to generate perturbations effectively. This strategy allows the individual to span across more possible solutions and thus, is able to produce better solutions. A comprehensive analysis of OSOMA on multi-dimensional unconstrained benchmark test functions is performed. OSOMA is then applied to solve real-time Dynamic Traveling Salesman Problem (DTSP). The problem of real-time DTSP has been stipulated and simulated using real-time data from Google Maps with a varying cost-metric between any two cities. Although DTSP is a very common and intuitive model in the real world, its presence in literature is still very limited. OSOMA performs exceptionally well on the problems mentioned above. To substantiate this claim, the performance of OSOMA is compared with SOMA, Differential Evolution and Particle Swarm Optimization.Comment: 6 pages, published in CISS 201

    An Efficient Hybrid Ant Colony System for the Generalized Traveling Salesman Problem

    Get PDF
    The Generalized Traveling Salesman Problem (GTSP) is an extension of the well-known Traveling Salesman Problem (TSP), where the node set is partitioned into clusters, and the objective is to find the shortest cycle visiting each cluster exactly once. In this paper, we present a new hybrid Ant Colony System (ACS) algorithm for the symmetric GTSP. The proposed algorithm is a modification of a simple ACS for the TSP improved by an efficient GTSP-specific local search procedure. Our extensive computational experiments show that the use of the local search procedure dramatically improves the performance of the ACS algorithm, making it one of the most successful GTSP metaheuristics to date.Comment: 7 page
    • …
    corecore