997 research outputs found

    Systems-compatible Incentives

    Get PDF
    Originally, the Internet was a technological playground, a collaborative endeavor among researchers who shared the common goal of achieving communication. Self-interest used not to be a concern, but the motivations of the Internet's participants have broadened. Today, the Internet consists of millions of commercial entities and nearly 2 billion users, who often have conflicting goals. For example, while Facebook gives users the illusion of access control, users do not have the ability to control how the personal data they upload is shared or sold by Facebook. Even in BitTorrent, where all users seemingly have the same motivation of downloading a file as quickly as possible, users can subvert the protocol to download more quickly without giving their fair share. These examples demonstrate that protocols that are merely technologically proficient are not enough. Successful networked systems must account for potentially competing interests. In this dissertation, I demonstrate how to build systems that give users incentives to follow the systems' protocols. To achieve incentive-compatible systems, I apply mechanisms from game theory and auction theory to protocol design. This approach has been considered in prior literature, but unfortunately has resulted in few real, deployed systems with incentives to cooperate. I identify the primary challenge in applying mechanism design and game theory to large-scale systems: the goals and assumptions of economic mechanisms often do not match those of networked systems. For example, while auction theory may assume a centralized clearing house, there is no analog in a decentralized system seeking to avoid single points of failure or centralized policies. Similarly, game theory often assumes that each player is able to observe everyone else's actions, or at the very least know how many other players there are, but maintaining perfect system-wide information is impossible in most systems. In other words, not all incentive mechanisms are systems-compatible. The main contribution of this dissertation is the design, implementation, and evaluation of various systems-compatible incentive mechanisms and their application to a wide range of deployable systems. These systems include BitTorrent, which is used to distribute a large file to a large number of downloaders, PeerWise, which leverages user cooperation to achieve lower latencies in Internet routing, and Hoodnets, a new system I present that allows users to share their cellular data access to obtain greater bandwidth on their mobile devices. Each of these systems represents a different point in the design space of systems-compatible incentives. Taken together, along with their implementations and evaluations, these systems demonstrate that systems-compatibility is crucial in achieving practical incentives in real systems. I present design principles outlining how to achieve systems-compatible incentives, which may serve an even broader range of systems than considered herein. I conclude this dissertation with what I consider to be the most important open problems in aligning the competing interests of the Internet's participants

    Participation of distributed loads in power markets that co-optimize energy and reserves

    Full text link
    Thesis (Ph.D.)--Boston UniversityAs the integration of Renewable Generation into today's Power Systems is progressing rapidly, capacity reserve requirements needed to compensate for the intermittency of renewable generation is increasing equally rapidly. A major objective of this thesis is to promote the affordability of incremental reserves by enabling loads to provide them through demand response. Regulation Service (RS) reserves, a critical type of bi-directional Capacity Reserves, are provided today by expensive and environmentally unfriendly centralized fossil fuel generators. In contrast, we investigate the provision of low-cost RS reserves by the demand-side. This is a challenging undertaking since loads must first promise reserves in the Hour Ahead Markets, and then be capable of responding to the dynamic ISO signals by adjusting their consumption effectively and efficiently. To this end, we use Stochastic Control, Optimization Theory, and Approximate Dynamic Programming to develop a decision support framework that assists Smart Neighborhood Operators or Smart Building Operators (SNOs/SBOs) to become demand-side-providers of RS reserve. We first address the SNO/SBO short time scale operational task of responding to the Independent System Operator's (ISO) dynamic RS requests. We start by developing a model-based Markovian decision problem that trades off ISO RS tracking against demand response related utility loss. Starting with a model based approach we obtain near optimal operational policies through a novel approximate policy iteration technique and an actor critic approach which is robust to partial knowledge of the underlying system dynamics. We then abandon the model based terrain and solve the dynamic operational problem through reinforcement learning that is capable of modeling a population of duty cycle appliances with realistic thermodynamics. We finally propose a smart thermostat design and develop an adaptive control policy that can drive the smart thermostat effectively. The latter approach is particularly suited for systems whose dynamics and dynamically changing consumer preferences are not known or observed beyond the total power consumption. We then address the SNO/SBO task of bidding RS reserves to the hour ahead market. This task determines the maximal RS reserves that the SNO/SBO can promise based on information available at the beginning of an hour, so as to maximize the associated hour-ahead revenues minus the expected average operating cost that will be incurred during the operational task to follow. To accomplish this task, we (i) develop probabilistic constraints that model the feasible maximum reserves which can be offered to the market without exceeding the SNO/SBO's ability to later track the unanticipated dynamic ISO RS signal, and (ii) calibrate a describing function that approximates the average operational cost as a function of the maximal reserves that can be feasibly offered in the day ahead market. The above is made possible by statistical analysis of the controlled system's stochastic dynamics and properties of the optimal dynamic policies that we derive. The contribution of the thesis is twofold: The solution of a difficult stochastic control problem that is crucial for effective demand-response-based provision of regulation service, and, the characterization of key properties of the stochastic control problem solution, which allow its integration into the hour-ahead market bidding problem

    INCORPORATING TRAVEL TIME RELIABILITY INTO TRANSPORTATION NETWORK MODELING

    Get PDF
    Travel time reliability is deemed as one of the most important factors affecting travelers’ route choice decisions. However, existing practices mostly consider average travel time only. This dissertation establishes a methodology framework to overcome such limitation. Semi-standard deviation is first proposed as the measure of reliability to quantify the risk under uncertain conditions on the network. This measure only accounts for travel times that exceed certain pre-specified benchmark, which offers a better behavioral interpretation and theoretical foundation than some currently used measures such as standard deviation and the probability of on-time arrival. Two path finding models are then developed by integrating both average travel time and semi-standard deviation. The single objective model tries to minimize the weighted sum of average travel time and semi-standard deviation, while the multi-objective model treats them as separate objectives and seeks to minimize them simultaneously. The multi-objective formulation is preferred to the single objective model, because it eliminates the need for prior knowledge of reliability ratios. It offers an additional benefit of providing multiple attractive paths for traveler’s further decision making. The sampling based approach using archived travel time data is applied to derive the path semi-standard deviation. The approach provides a nice workaround to the problem that there is no exact solution to analytically derive the measure. Through this process, the correlation structure can be implicitly accounted for while simultaneously avoiding the complicated link travel time distribution fitting and convolution process. Furthermore, the metaheuristic algorithm and stochastic dominance based approach are adapted to solve the proposed models. Both approaches address the issue where classical shortest path algorithms are not applicable due to non-additive semi-standard deviation. However, the stochastic dominance based approach is preferred because it is more computationally efficient and can always find the true optimal paths. In addition to semi-standard deviation, on-time arrival probability and scheduling delay measures are also investigated. Although these three measures share similar mathematical structures, they exhibit different behaviors in response to large deviations from the pre-specified travel time benchmark. Theoretical connections between these measures and the first three stochastic dominance rules are also established. This enables us to incorporate on-time arrival probability and scheduling delay measures into the methodology framework as well

    Modeling and Analysis of Power Processing Systems (MAPPS), initial phase 2

    Get PDF
    The overall objective of the program is to provide the engineering tools to reduce the analysis, design, and development effort, and thus the cost, in achieving the required performances for switching regulators and dc-dc converter systems. The program was both tutorial and application oriented. Various analytical methods were described in detail and supplemented with examples, and those with standardization appeals were reduced into computer-based subprograms. Major program efforts included those concerning small and large signal control-dependent performance analysis and simulation, control circuit design, power circuit design and optimization, system configuration study, and system performance simulation. Techniques including discrete time domain, conventional frequency domain, Lagrange multiplier, nonlinear programming, and control design synthesis were employed in these efforts. To enhance interactive conversation between the modeling and analysis subprograms and the user, a working prototype of the Data Management Program was also developed to facilitate expansion as future subprogram capabilities increase

    Economic Operation of Power Systems with Significant Wind Power Penetration

    Get PDF
    • …
    corecore