31,994 research outputs found

    Design and Analysis of an Estimation of Distribution Approximation Algorithm for Single Machine Scheduling in Uncertain Environments

    Full text link
    In the current work we introduce a novel estimation of distribution algorithm to tackle a hard combinatorial optimization problem, namely the single-machine scheduling problem, with uncertain delivery times. The majority of the existing research coping with optimization problems in uncertain environment aims at finding a single sufficiently robust solution so that random noise and unpredictable circumstances would have the least possible detrimental effect on the quality of the solution. The measures of robustness are usually based on various kinds of empirically designed averaging techniques. In contrast to the previous work, our algorithm aims at finding a collection of robust schedules that allow for a more informative decision making. The notion of robustness is measured quantitatively in terms of the classical mathematical notion of a norm on a vector space. We provide a theoretical insight into the relationship between the properties of the probability distribution over the uncertain delivery times and the robustness quality of the schedules produced by the algorithm after a polynomial runtime in terms of approximation ratios

    Analysis of the computational complexity of solving random satisfiability problems using branch and bound search algorithms

    Full text link
    The computational complexity of solving random 3-Satisfiability (3-SAT) problems is investigated. 3-SAT is a representative example of hard computational tasks; it consists in knowing whether a set of alpha N randomly drawn logical constraints involving N Boolean variables can be satisfied altogether or not. Widely used solving procedures, as the Davis-Putnam-Loveland-Logeman (DPLL) algorithm, perform a systematic search for a solution, through a sequence of trials and errors represented by a search tree. In the present study, we identify, using theory and numerical experiments, easy (size of the search tree scaling polynomially with N) and hard (exponential scaling) regimes as a function of the ratio alpha of constraints per variable. The typical complexity is explicitly calculated in the different regimes, in very good agreement with numerical simulations. Our theoretical approach is based on the analysis of the growth of the branches in the search tree under the operation of DPLL. On each branch, the initial 3-SAT problem is dynamically turned into a more generic 2+p-SAT problem, where p and 1-p are the fractions of constraints involving three and two variables respectively. The growth of each branch is monitored by the dynamical evolution of alpha and p and is represented by a trajectory in the static phase diagram of the random 2+p-SAT problem. Depending on whether or not the trajectories cross the boundary between phases, single branches or full trees are generated by DPLL, resulting in easy or hard resolutions.Comment: 37 RevTeX pages, 15 figures; submitted to Phys.Rev.

    Solving DCOPs with Distributed Large Neighborhood Search

    Full text link
    The field of Distributed Constraint Optimization has gained momentum in recent years, thanks to its ability to address various applications related to multi-agent cooperation. Nevertheless, solving Distributed Constraint Optimization Problems (DCOPs) optimally is NP-hard. Therefore, in large-scale, complex applications, incomplete DCOP algorithms are necessary. Current incomplete DCOP algorithms suffer of one or more of the following limitations: they (a) find local minima without providing quality guarantees; (b) provide loose quality assessment; or (c) are unable to benefit from the structure of the problem, such as domain-dependent knowledge and hard constraints. Therefore, capitalizing on strategies from the centralized constraint solving community, we propose a Distributed Large Neighborhood Search (D-LNS) framework to solve DCOPs. The proposed framework (with its novel repair phase) provides guarantees on solution quality, refining upper and lower bounds during the iterative process, and can exploit domain-dependent structures. Our experimental results show that D-LNS outperforms other incomplete DCOP algorithms on both structured and unstructured problem instances

    Optimizing Your Online-Advertisement Asynchronously

    Full text link
    We consider the problem of designing optimal online-ad investment strategies for a single advertiser, who invests at multiple sponsored search sites simultaneously, with the objective of maximizing his average revenue subject to the advertising budget constraint. A greedy online investment scheme is developed to achieve an average revenue that can be pushed to within O(ϵ)O(\epsilon) of the optimal, for any ϵ>0\epsilon>0, with a tradeoff that the temporal budget violation is O(1/ϵ)O(1/\epsilon). Different from many existing algorithms, our scheme allows the advertiser to \emph{asynchronously} update his investments on each search engine site, hence applies to systems where the timescales of action update intervals are heterogeneous for different sites. We also quantify the impact of inaccurate estimation of the system dynamics and show that the algorithm is robust against imperfect system knowledge

    Optimal web-scale tiering as a flow problem

    Get PDF
    We present a fast online solver for large scale parametric max-flow problems as they occur in portfolio optimization, inventory management, computer vision, and logistics. Our algorithm solves an integer linear program in an online fashion. It exploits total unimodularity of the constraint matrix and a Lagrangian relaxation to solve the problem as a convex online game. The algorithm generates approximate solutions of max-flow problems by performing stochastic gradient descent on a set of flows. We apply the algorithm to optimize tier arrangement of over 84 million web pages on a layered set of caches to serve an incoming query stream optimally
    corecore