751 research outputs found

    Algorithms for the continuous nonlinear resource allocation problem---new implementations and numerical studies

    Full text link
    Patriksson (2008) provided a then up-to-date survey on the continuous,separable, differentiable and convex resource allocation problem with a single resource constraint. Since the publication of that paper the interest in the problem has grown: several new applications have arisen where the problem at hand constitutes a subproblem, and several new algorithms have been developed for its efficient solution. This paper therefore serves three purposes. First, it provides an up-to-date extension of the survey of the literature of the field, complementing the survey in Patriksson (2008) with more then 20 books and articles. Second, it contributes improvements of some of these algorithms, in particular with an improvement of the pegging (that is, variable fixing) process in the relaxation algorithm, and an improved means to evaluate subsolutions. Third, it numerically evaluates several relaxation (primal) and breakpoint (dual) algorithms, incorporating a variety of pegging strategies, as well as a quasi-Newton method. Our conclusion is that our modification of the relaxation algorithm performs the best. At least for problem sizes up to 30 million variables the practical time complexity for the breakpoint and relaxation algorithms is linear

    A DECOMPOSITION PROCEDURE BASED ON APPROXIMATE NEWTON DIRECTIONS

    Get PDF
    The efficient solution of large-scale linear and nonlinear optimization problems may require exploiting any special structure in them in an efficient manner. We describe and analyze some cases in which this special structure can be used with very little cost to obtain search directions from decomposed subproblems. We also study how to correct these directions using (decomposable) preconditioned conjugate gradient methods to ensure local convergence in all cases. The choice of appropriate preconditioners results in a natural manner from the structure in the problem. Finally, we conduct computational experiments to compare the resulting procedures with direct methods, as well as to study the impact of different preconditioner choices.

    A decomposition procedure based on approximate newton directions

    Get PDF
    The efficient solution of large-scale linear and nonlinear optimization problems may require exploiting any special structure in them in an efficient manner. We describe and analyze some cases in which this special structure can be used with very little cost to obtain search directions from decomposed subproblems. We also study how to correct these directions using (decomposable) preconditioned conjugate gradient methods to ensure local convergence in all cases. The choice of appropriate preconditioners results in a natural manner from the structure in the problem. Finally, we conduct computational experiments to compare the resulting procedures with direct methods, as well as to study the impact of different preconditioner choices

    Nonlinear Programming Techniques Applied to Stochastic Programs with Recourse

    Get PDF
    Stochastic convex programs with recourse can equivalently be formulated as nonlinear convex programming problems. These possess some rather marked characteristics. Firstly, the proportion of linear to nonlinear variables is often large and leads to a natural partition of the constraints and objective. Secondly, the objective function corresponding to the nonlinear variables can vary over a wide range of possibilities; under appropriate assumptions about the underlying stochastic program it could be, for example, a smooth function, a separable polyhedral function or a nonsmooth function whose values and gradients are very expensive to compute. Thirdly, the problems are often large-scale and linearly constrained with special structure in the constraints. This paper is a comprehensive study of solution methods for stochastic programs with recourse viewed from the above standpoint. We describe a number of promising algorithmic approaches that are derived from methods of nonlinear programming. The discussion is a fairly general one, but the solution of two classes of stochastic programs with recourse are of particular interest. The first corresponds to stochastic linear programs with simple recourse and stochastic right-hand-side elements with given discrete probability distribution. The second corresponds to stochastic linear programs with complete recourse and stochastic right-hand-side vectors defined by a limited number of scenarios, each with given probability. A repeated theme is the use of the MINOS code of Murtagh and Saunders as a basis for developing suitable implementations

    A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems

    Get PDF
    We study a generic minimization problem with separable non-convex piecewise linear costs, showing that the linear programming (LP) relaxation of three textbook mixed integer programming formulations each approximates the cost function by its lower convex envelope. We also show a relationship between this result and classical Lagrangian duality theory
    corecore