925 research outputs found

    CFA optimizer: A new and powerful algorithm inspired by Franklin's and Coulomb's laws theory for solving the economic load dispatch problems

    Full text link
    Copyright © 2018 John Wiley & Sons, Ltd. This paper presents a new efficient algorithm inspired by Franklin's and Coulomb's laws theory that is referred to as CFA algorithm, for finding the global solutions of optimal economic load dispatch problems in power systems. CFA is based on the impact of electrically charged particles on each other due to electrical attraction and repulsion forces. The effectiveness of the CFA in different terms is tested on basic benchmark problems. Then, the quality of the CFA to achieve accurate results in different aspects is examined and proven on economic load dispatch problems including 4 different size cases, 6, 10, 15, and 110-unit test systems. Finally, the results are compared with other inspired algorithms as well as results reported in the literature. The simulation results provide evidence for the well-organized and efficient performance of the CFA algorithm in solving great diversity of nonlinear optimization problems

    A hybrid Jaya algorithm for reliability–redundancy allocation problems

    Full text link
    © 2017 Informa UK Limited, trading as Taylor & Francis Group. This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching–learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability–redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series–parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30–100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results

    Intelligent Processing in Wireless Communications Using Particle Swarm Based Methods

    Get PDF
    There are a lot of optimization needs in the research and design of wireless communica- tion systems. Many of these optimization problems are Nondeterministic Polynomial (NP) hard problems and could not be solved well. Many of other non-NP-hard optimization problems are combinatorial and do not have satisfying solutions either. This dissertation presents a series of Particle Swarm Optimization (PSO) based search and optimization algorithms that solve open research and design problems in wireless communications. These problems are either avoided or solved approximately before. PSO is a bottom-up approach for optimization problems. It imposes no conditions on the underlying problem. Its simple formulation makes it easy to implement, apply, extend and hybridize. The algorithm uses simple operators like adders, and multipliers to travel through the search space and the process requires just five simple steps. PSO is also easy to control because it has limited number of parameters and is less sensitive to parameters than other swarm intelligence algorithms. It is not dependent on initial points and converges very fast. Four types of PSO based approaches are proposed targeting four different kinds of problems in wireless communications. First, we use binary PSO and continuous PSO together to find optimal compositions of Gaussian derivative pulses to form several UWB pulses that not only comply with the FCC spectrum mask, but also best exploit the avail- able spectrum and power. Second, three different PSO based algorithms are developed to solve the NLOS/LOS channel differentiation, NLOS range error mitigation and multilateration problems respectively. Third, a PSO based search method is proposed to find optimal orthogonal code sets to reduce the inter carrier interference effects in an frequency redundant OFDM system. Fourth, a PSO based phase optimization technique is proposed in reducing the PAPR of an frequency redundant OFDM system. The PSO based approaches are compared with other canonical solutions for these communication problems and showed superior performance in many aspects. which are confirmed by analysis and simulation results provided respectively. Open questions and future Open questions and future works for the dissertation are proposed to serve as a guide for the future research efforts

    Bi-Objective simplified swarm optimization for fog computing task scheduling

    Get PDF
    In the face of burgeoning data volumes, latency issues present a formidable challenge to cloud computing. This problem has been strategically tackled through the advent of fog computing, shifting computations from central cloud data centers to local fog devices. This process minimizes data transmission to distant servers, resulting in significant cost savings and instantaneous responses for users. Despite the urgency of many fog computing applications, existing research falls short in providing time-effective and tailored algorithms for fog computing task scheduling. To bridge this gap, we introduce a unique local search mechanism, Card Sorting Local Search (CSLS), that augments the non-dominated solutions found by the Bi-objective Simplified Swarm Optimization (BSSO). We further propose Fast Elite Selecting (FES), a ground-breaking one-front non-dominated sorting method that curtails the time complexity of non-dominated sorting processes. By integrating BSSO, CSLS, and FES, we are unveiling a novel algorithm, Elite Swarm Simplified Optimization (EliteSSO), specifically developed to conquer time-efficiency and non-dominated solution issues, predominantly in large-scale fog computing task scheduling conundrums. Computational evidence reveals that our proposed algorithm is both highly efficient in terms of time and exceedingly effective, outstripping other algorithms on a significant scale

    A novel discrete bat algorithm for heterogeneous redundancy allocation of multi-state systems subject to probabilistic common-cause failure

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This paper focuses on a heterogeneous redundancy allocation problem (RAP) for multi-state series-parallel systems subject to probabilistic common-cause failure and proposes a novel discrete bat algorithm to solve it. Although abundant research studies have been published for solving multi-state RAPs, few of them have studied probabilistic common cause failure, which motivates this paper. Due to the insufficient data of components, an interval-valued universal generating function is utilized to evaluate the availability of components and the whole system. The challenge of solving this kind of RAPs lies in not only the reliability estimation, but also the solution method. This paper presents a novel discrete bat algorithm (BA) for effectively dealing with the proposed RAP and alleviating the premature convergence of BA. Two main features of the adaptation are Hamming distance-based bat movement (HDBM) and Q learning-based local search (QLLS). HDBM transfers the Hamming distance between the current bat and the best bat in the swarm to the movement rate. Then, QLLS utilizes Q-learning to adjust the local search strategies dynamically during the iterations. The computational results from extensive experiments demonstrate that the proposed algorithm is powerful, which is more efficient than other state-of-the-arts on this sort of problems

    A Decision Modeling For Phasor Measurement Unit Location Selection In Smart Grid Systems

    Get PDF
    As a key technology for enhancing the smart grid system, Phasor Measurement Unit (PMU) provides synchronized phasor measurements of voltages and currents of wide-area electric power grid. With various benefits from its application, one of the critical issues in utilizing PMUs is the optimal site selection of units. The main aim of this research is to develop a decision support system, which can be used in resource allocation task for smart grid system analysis. As an effort to suggest a robust decision model and standardize the decision modeling process, a harmonized modeling framework, which considers operational circumstances of component, is proposed in connection with a deterministic approach utilizing integer programming. With the results obtained from the optimal PMU placement problem, the advantages and potential that the harmonized modeling process possesses are assessed and discussed

    新たな進化的及びニューロン計算による分類問題に関する研究

    Get PDF
    富山大学・富理工博甲第172号・銭孝孝・2020/3/24富山大学202

    Optimization of systems reliability by metaheuristic approach

    Get PDF
    The application of metaheuristic approaches in addressing the reliability of systems through optimization is of greater interest to researchers and designers in recent years. Reliability optimization has become an essential part of the design and operation of largescale manufacturing systems. This thesis addresses the optimization of system-reliability for series–parallel systems to solve redundant, continuous, and combinatorial optimization problems in reliability engineering by using metaheuristic approaches (MAs). The problem is to select the best redundancy strategy, component, and redundancy level for each subsystem to maximize the system reliability under system-level constraints. This type of problem involves the selection of components with multiple choices and redundancy levels that yield the maximum benefits, and it is subject to the cost and weight constraints at the system level. These are very common and realistic problems faced in the conceptual design of numerous engineering systems. The development of efficient solutions to these problems is becoming progressively important because mechanical systems are becoming increasingly complex, while development plans are decreasing in size and reliability requirements are rapidly changing and becoming increasingly difficult to adhere to. An optimal design solution can be obtained very frequently and more quickly by using genetic algorithm redundancy allocation problems (GARAPs). In general, redundancy allocation problems (RAPs) are difficult to solve for real cases, especially in large-scale situations. In this study, the reliability optimization of a series–parallel by using a genetic algorithm (GA) and statistical analysis is considered. The approach discussed herein can be applied to address the challenges in system reliability that includes redundant numbers of carefully chosen modules, overall cost, and overall weight. Most related studies have focused only on the single-objective optimization of RAP. Multiobjective optimization has not yet attracted much attention. This research project examines the multiobjective situation by focusing on multiobjective formulation, which is useful in maximizing system reliability while simultaneously minimizing system cost and weight to solve the RAP. The present study applies a methodology for optimizing the reliability of a series–parallel system based on multiobjective optimization and multistate reliability by using a hybrid GA and a fuzzy function. The study aims to determine the strategy for selecting the degree of redundancy for every subsystem to exploit the general system reliability depending on the overall cost and weight limitations. In addition, the outcomes of the case study for optimizing the reliability of the series–parallel system are presented, and the relationships with previously investigated phenomena are presented to determine the performance of the GA under review. Furthermore, this study established a new metaheuristic-based technique for resolving multiobjective optimization challenges, such as the common reliability redundancy allocation problem. Additionally, a new simulation process was developed to generate practical tools for designing reliable series–parallel systems. Hence, metaheuristic methods were applied for solving such difficult and complex problems. In addition, metaheuristics provide a useful compromise between the amount of computation time required and the quality of the approximated solution space. The industrial challenges include the maximization of system reliability subject to limited system cost and weight, minimization of system weight subject to limited system cost and the system reliability requirements and increasing of quality components through optimization and system reliability. Furthermore, a real-life situation research on security control of a gas turbine in the overspeed state was explored in this study with the aim of verifying the proposed algorithm from the context of system optimization

    Cardiovascular Disorder Detection with a PSO-Optimized Bi-LSTM Recurrent Neural Network Model

    Get PDF
    The medical community is facing ever-increasing difficulties in identifying and treating cardiovascular diseases. The World Health Organization (WHO) reports that despite the availability of numerous high-priced medical remedies for persons with heart problems, CVDs continue to be the main cause of mortality globally, accounting for over 21 million deaths annually. When cardiovascular diseases are identified and treated early on, they cause far fewer deaths. Deep learning models have facilitated automated diagnostic methods for early detection of these diseases. Cardiovascular diseases often present insidious symptoms that are difficult to identify in a timely manner. Prompt diagnosis of individuals with CVD and related conditions, such as high blood pressure or high cholesterol, is crucial to initiate appropriate treatment. Recurrent neural networks (RNNs) with gated recurrent units (GRUs) have recently emerged as a more advanced variant, capable of surpassing Long Short-Term Memory (LSTM) models in several applications. When compared to LSTMs, GRUs have the advantages of faster calculation and less memory usage. When it comes to CVD prediction, the bio-inspired Particle Swarm Optimization (PSO) algorithm provides a straightforward method of getting the best possible outcomes with minimal effort. This stochastic optimization method requires neither the gradient nor any differentiated form of the objective function and emulates the behaviour and intelligence of swarms. PSO employs a swarm of agents, called particles, that navigate the search space to find the best prediction type.This study primarily focuses on predicting cardiovascular diseases using effective feature selection and classification methods. For CVD forecasting, we offer a GRU model built on recurrent neural networks and optimized with particle swarms (RNN-GRU-PSO). We find that the proposed model significantly outperforms the state-of-the-art models (98.2% accuracy in predicting cardiovascular diseases) in a head-to-head comparison

    Evolutionary Algorithms in Engineering Design Optimization

    Get PDF
    Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc
    corecore