1,964 research outputs found

    Detection and Pose Determination of a Part for Bin Picking

    Get PDF
    Tato diplomová práce se zabývá tématem vizuální úlohy vybírání, ve které se postupně vybírají součástky z bedny. Částečně strukturovná varianta této úlohy je uvažována. V této diplomové práci se navrhuje řešení této úlohy, které je záloženo na konvolučních neuronových sítích. Díky tomu, programová specifikace geometrie součástky není nutná. Návrhovaný systém odhaduje pozici a orientaci součástky a detekuje překrytí součástek. Systém byl implementován a otestován s použitím kovové součástky. Odhadovaná kvalita systému je 95 % úspěšných pokusů vybrání.This thesis discusses the visual bin picking task, which is the task of sequential unloading a bin one part at a time using a camera as a primary source of information. The semi-structured variant of the bin picking task is considered. In this thesis, a solution for this problem that is based on learning the appearance model of a part using convolutional neural networks is proposed. Thus, no hard-coded geometry of a part is required. The models in the developed system predict the poses of the parts and detect occlusions. The proposed system has been implemented and tested with a metallic strut bracket. The experiments have shown that the achieved estimated success rate of the system is 95% of acquiring attempts

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Neuro-fuzzy control modelling for gas metal arc welding process

    Get PDF
    Weld quality features are difficult or impossible to directly measure and control during welding, therefore indirect methods are necessary. Penetration is the most important geometric feature since in most applications it is the most significant factor affecting joint strength. Observation of penetration is only possible from the back face of the full penetration weld. In all other cases, since direct measurement of depth of penetration is not possible, real time control of penetration in the Gas Metal Arc Welding (GMAW) process by sensing conditions at the top surface of the joint is necessary. This continues to be a major area of interest for automation of the process. The objective of this research has been to develop an on-line intelligent process control model for GMAW, which can monitor and control the welding process. The model uses measurement of the temperature at a point on the surface of the workpiece to predict the depth of penetration being achieved, and to provide feedback for corrective adjustment of welding variables. Neural Network and Fuzzy Logic technologies have been used to achieve a reliable Neuro-Fuzzy control model for GMAW of a typical closed butt joint having 60° Vee edge preparation. The neural network model predicts the surface temperature expected for a set of fixed and adjustable welding variables when a prescribed level of penetration is achieved. This predicted temperature is compared with the actual surface temperature occurring during welding, as measured by an infrared sensor. If there is a difference between the measured temperature and the temperature predicted by the neural network, a fuzzy logic model will recommend changes to the adjustable welding variables necessary to achieve the desired weld penetration. Large scale experiments to obtain data for modelling and for model validation, and various other modelling studies are described. The results are used to establish the relationships between the output surface temperature measurement, welding variables and the corresponding achieved weld quality criteria. The effectiveness of the modelling methodology in dealing with fixed or variable root gap has also been tested. The result shows that the Neuro-fuzzy models are capable of providing control of penetration to an acceptable degree of accuracy, and a potential control response time, using modestly powerful computing hardware, of the order of one hundred milliseconds. This is more than adequate for real time control of GMAW. The application potential for control using these models is significant since, unlike many other top surface monitoring methods, it does not require sensing of the highly transient weld pool shape or surface

    Application of backpropagation-like generative algorithms to various problems.

    Get PDF
    Thesis (M.Sc.)-University of Natal, Durban, 1992.Artificial neural networks (ANNs) were originally inspired by networks of biological neurons and the interactions present in networks of these neurons. The recent revival of interest in ANNs has again focused attention on the apparent ability of ANNs to solve difficult problems, such as machine vision, in novel ways. There are many types of ANNs which differ in architecture and learning algorithms, and the list grows annually. This study was restricted to feed-forward architectures and Backpropagation- like (BP-like) learning algorithms. However, it is well known that the learning problem for such networks is NP-complete. Thus generative and incremental learning algorithms, which have various advantages and to which the NP-completeness analysis used for BP-like networks may not apply, were also studied. Various algorithms were investigated and the performance compared. Finally, the better algorithms were applied to a number of problems including music composition, image binarization and navigation and goal satisfaction in an artificial environment. These tasks were chosen to investigate different aspects of ANN behaviour. The results, where appropriate, were compared to those resulting from non-ANN methods, and varied from poor to very encouraging

    Out of equilibrium Statistical Physics of learning

    Get PDF
    In the study of hard optimization problems, it is often unfeasible to achieve a full analytic control on the dynamics of the algorithmic processes that find solutions efficiently. In many cases, a static approach is able to provide considerable insight into the dynamical properties of these algorithms: in fact, the geometrical structures found in the energetic landscape can strongly affect the stationary states and the optimal configurations reached by the solvers. In this context, a classical Statistical Mechanics approach, relying on the assumption of the asymptotic realization of a Boltzmann Gibbs equilibrium, can yield misleading predictions when the studied algorithms comprise some stochastic components that effectively drive these processes out of equilibrium. Thus, it becomes necessary to develop some intuition on the relevant features of the studied phenomena and to build an ad hoc Large Deviation analysis, providing a more targeted and richer description of the geometrical properties of the landscape. The present thesis focuses on the study of learning processes in Artificial Neural Networks, with the aim of introducing an out of equilibrium statistical physics framework, based on the introduction of a local entropy potential, for supporting and inspiring algorithmic improvements in the field of Deep Learning, and for developing models of neural computation that can carry both biological and engineering interest

    Extending the limits of direct high angular resolution infrared astronomical imaging

    Get PDF
    Observing in the infrared (IR) part of the electromagnetic spectrum is now an established tool of astronomy. It allows investigations of, among others, high redshift galaxies, star formation regions and very low mass stars close to the hydrogen burning limit as well as providing information complementary to that obtained in other regions of the spectrum.The dimensions of infrared arrays have increased over the years from 62 x 58 in IRCAMl, the first infrared imager on the UK Infrared Telescope, to the 2562 array in IRCAM3, the current camera, soon to be superceded by 10242 arrays in the next generation of instruments. In this thesis, I describe the first observing programme which uses infrared observations to measure trigonometric parallaxes - made possible through the introduction of larger IR arrays. In this programme, certain difficulties associated with infrared techniques are encountered and described with results presented for a previously measured star and a brown dwarf candidate.A major benefit of observing in the infrared is that atmospheric distortion has less of an effect on the formation of images - seeing on a good site can be iv < 0.5" at 2µm. The recent development of Adaptive Optics (AO) systems, which compensate for wavefront aberrations as observations are made, further reduce the effects of atmospheric distortion.AO systems have a servo -loop in which a deformable mirror attempts to remove the distortion present in the measured wavefront. In this thesis, I describe a method of real time characterisation of the most recent behaviour of the atmosphere, as observed by an AO system. Rather than reacting to the last measured distortion, this knowledge can be used in the servo -loop to reduce mirror fitting errors by predicting the next mirror shape. I describe a series of simulations which prove the validity of this novel technique. Finally, with simulations of the AO system being built for the William Herschel Telescope, I show that the improvement in performance available through prediction allows use of an AO guide star about 0.25 magnitudes fainter when compared with the non -predictive case

    Planning Hybrid Driving-Stepping Locomotion for Ground Robots in Challenging Environments

    Get PDF
    Ground robots capable of navigating a wide range of terrains are needed in several domains such as disaster response or planetary exploration. Hybrid driving-stepping locomotion is promising since it combines the complementary strengths of the two locomotion modes. However, suitable platforms require complex kinematic capabilities which need to be considered in corresponding locomotion planning methods. High terrain complexities induce further challenges for the planning problem. We present a search-based hybrid driving-stepping locomotion planning approach for robots which possess a quadrupedal base with legs ending in steerable wheels allowing for omnidirectional driving and stepping. Driving is preferred on sufficiently flat terrain while stepping is considered in the vicinity of obstacles. Steps are handled in a hierarchical manner: while only the connection between suitable footholds is considered during planning, those steps in the resulting path are expanded to detailed motion sequences considering the robot stability. To enable precise locomotion in challenging terrain, the planner takes the individual robot footprint into account. The method is evaluated in simulation and in real-world applications with the robots Momaro and Centauro. The results indicate that the planner provides bounded sub-optimal paths in feasible time. However, the required fine resolution and high-dimensional robot representation result in too large state spaces for more complex scenarios exceeding computation time and memory constraints. To enable the planner to be applicable in those scenarios, the method is extended to incorporate three levels of representation. In the vicinity of the robot, the detailed representation is used to obtain reliable paths for the near future. With increasing distance from the robot, the resolution gets coarser and the degrees of freedom of the robot representation decrease. To compensate this loss of information, those representations are enriched with additional semantics increasing the scene understanding. We further present how the most abstract representation can be used to generate an informed heuristic. Evaluation shows that planning is accelerated by multiple orders of magnitude with comparable result quality. However, manually designing the additional representations and tuning the corresponding cost functions requires a high effort. Therefore, we present a method to support the generation of an abstract representation through a convolutional neural network (CNN). While a low-dimensional, coarse robot representation and corresponding action set can be easily defined, a CNN is trained on artificially generated data to represent the abstract cost function. Subsequently, the abstract representation can be used to generate a similar informed heuristic, as described above. The CNN evaluation on multiple data sets indicates that the learned cost function generalizes well to realworld scenes and that the abstraction quality outperforms the manually tuned approach. Applied to hybrid driving-stepping locomotion planning, the heuristic achieves similar performance while design and tuning efforts are minimized. Since a learning-based method turned out to be beneficial to support the search-based planner, we finally investigate if the whole planning problem can be solved by a learning-based approach. Value Iteration Networks (VINs) are known to show good generalizability and goal-directed behavior, while being limited to small state spaces. Inspired by the above-described results, we extend VINs to incorporate multiple levels of abstraction to represent larger planning problems with suitable state space sizes. Experiments in 2D grid worlds show that this extension enables VINs to solve significantly larger planning tasks. We further apply the method to omnidirectional driving of the Centauro robot in cluttered environments which indicates limitations but also emphasizes the future potential of learning-based planning methods.Planung von Hybrider Fahr-Lauf-Lokomotion für Bodenroboter in Anspruchsvollen Umgebungen Bodenroboter, welche eine Vielzahl von Untergründen überwinden können, werden in vielen Anwendungsgebieten benötigt. Beispielszenarien sind die Katastrophenhilfe oder Erkundungsmissionen auf fremden Planeten. In diesem Kontext ist hybride Fahr-/Lauf-Fortbewegung vielversprechend, da sie die sich ergänzenden Stärken der beiden Fortbewegungsarten miteinander vereint. Um dies zu realisieren benötigen entsprechende Roboter allerdings komplexe kinematische Fähigkeiten, welche auch in adäquaten Ansätzen für die Planung dieser Fortbewegung berücksichtigt werden müssen. Anspruchsvolle Umgebungen mit komplexen Untergründen erhöhen dabei zusätzlich die Anforderungen an die Bewegungsplanung. In dieser Arbeit wird ein suchbasierter Ansatz für kombinierte Fahr-/Lauf-Fortbewegungsplanung vorgestellt. Die adressierten Zielplattformen sind vierbeinige Roboter, deren Beine in lenkbaren Rädern enden, so dass sie omnidirektional fahren und laufen können. Auf ausreichend ebenem Untergrund wird generell Fahren bevorzugt, während der Planer Laufmanöver in der Nähe von Hindernissen in Erwägung zieht. Schritte werden dabei in einer hierarchischen Art undWeise realisiert: Während des Planens werden nur Verbindungen zwischen geeigneten Auftrittsflächen gesucht. Nur solche Schritte, die im Ergebnispfad enthalten sind, werden anschließend zu detaillierten Bewegungsabläufen verfeinert, welche die Balance des Roboters sicherstellen. Um präzise Fortbewegung in anspruchsvollen Umgebungen zu ermöglichen, betrachtet der Planer die spezifischen Aufstandsflächen der vier Füße. Der Ansatz wurde sowohl in simulierten als auch in realen Tests mit den Robotern Momaro und Centauro evaluiert, wobei der Planer in der Lage war, Lösungspfade von ausreichender Qualität in zulässiger Zeit zu generieren. Allerdings ergeben die benötigte feine Planungsauflösung und die hochdimensionale Roboterrepräsentation große Zustandsräumen. Diese würden für komplexere oder größere Planungsprobleme die zulässige Rechenzeit und den verfügbaren Speicher überschreiten. Damit der Planer auch eben diese komplexeren oder größeren Planungsprobleme handhaben kann, wird eine Erweiterung des Ansatzes beschrieben, welche mehrere Repräsentationslevel mit einbezieht. In unmittelbarer Umgebung des Roboters wird die zuvor beschriebene detaillierte Repräsentation genutzt, um hochwertige Pfade für die nahe Zukunft zu erzeugen. Mit zunehmendem Abstand vom Roboter wird die Auflösung gröber und die Anzahl der Freiheitsgrade in der Roboterrepräsentation sinkt. Um den mit dieser Vergröberung einhergehenden Informationsverlust zu kompensieren, werden diese Repräsentationen mit zusätzlicher Semantik ausgestattet, welche das Szenenverständnis erhöht. Darüber hinaus wird beschrieben, wie die Repräsentation mit dem höchsten Abstraktionsgrad zur Berechnung einer effektiven Heuristik genutzt werden kann. Die Evaluation in Simulationsumgebungen zeigt, dass der Planungsprozess um mehrere Größenordnungen beschleunigt werden kann, während die Ergebnisqualität vergleichbar bleibt. Allerdings sind das manuelle Gestalten der zusätzlichen Repräsentationen und das dazugehörige Parametrisieren der Kostenfunktionen sehr arbeitsintensiv. Um diesen Aufwand zu reduzieren, wird daher eine Methode beschrieben, welche die Gestaltung einer abstrakten Repräsentation durch ein Convolutional Neural Network (CNN) unterstützt. Während eine grobe, niedrigdimensionale Roboterrepräsentation und ein dazugehöriges Aktionsset einfach definiert werden können, wird ein CNN auf künstlich erzeugten Daten trainiert, um die abstrakte Kostenfunktion zu lernen. Anschließend kann die so erzeugte abstrakte Repräsentation genutzt werden, um die bereits zuvor erwähnte effektive Heuristik zu berechnen. In der Evaluation des CNNs auf verschiedenen Datensätzen zeigt sich, dass die gelernte Kostenfunktion auch mit Daten aus realen Umgebungen funktioniert und dass die generelle Ergebnisqualität oberhalb der Ergebnisse mit manuell erzeugten Repräsentationen liegt. Die Anwendnung der Methode zur Planung hybrider Fahr-/Lauf-Fortbewegung zeigt, dass die so erzeugte Heuristik gleichwertige Ergebnisse wie die Heuristik auf Basis manuell erzeugter Repräsentation liefert, während der Aufwand zur Gestaltung und Parametrisierung deutlich verringert wurde. Da sich gezeigt hat, dass eine lernbasierte Methode den klassischen suchbasierten Ansatz effektiv unterstützen kann, wird in dieser Arbeit abschließend untersucht, ob das gesamte Planungsproblem durch eine lernbasierte Methode gelöst werden kann. Value Iteration Networks (VINs) sind in diesem Zusammenhang ein vielversprechender Ansatz, da sie bekanntlich ein gutes zielorientiertes Planungsverhalten lernen und das Gelernte auf unbekannte Situationen verallgemeinern können. Allerdings ist ihre bisherige Anwendung auf kleine Zustandsräume begrenzt. Durch die zuvor beschriebenen Ergebnisse motiviert, wird eine Erweiterung von VINs beschrieben, so dass diese auf verschiedenen Abstraktionsleveln planen, um größere Planungsprobleme in Zustandsräumen entsprechender Größe darzustellen. Experimente in 2D-Rasterumgebungen zeigen, dass die beschriebene Methode VINs in die Lage versetzt, deutlich größere Planungsprobleme zu lösen. Darüber hinaus wird die beschriebene Methode benutzt, um omnidirektionale Fahrmanöver für den Centauro-Roboter in anspruchsvollen Umgebungen zu planen. Gleichzeitig werden hier aber auch die momentanen, hardware-bedingten Grenzen rein lernbasierter Ansätze sowie ihr zukünftiges Potential aufgezeigt
    corecore