40,886 research outputs found

    Phaseless VLBI mapping of compact extragalactic radio sources

    Full text link
    The problem of phaseless aperture synthesis is of current interest in phase-unstable VLBI with a small number of elements when either the use of closure phases is not possible (a two-element interferometer) or their quality and number are not enough for acceptable image reconstruction by standard adaptive calibration methods. Therefore, we discuss the problem of unique image reconstruction only from the spectrum magnitude of a source. We suggest an efficient method for phaseless VLBI mapping of compact extragalactic radio sources. This method is based on the reconstruction of the spectrum magnitude for a source on the entire UV plane from the measured visibility magnitude on a limited set of points and the reconstruction of the sought-for image of the source by Fienup's method from the spectrum magnitude reconstructed at the first stage. We present the results of our mapping of the extragalactic radio source 2200 +420 using astrometric and geodetic observations on a global VLBI array. Particular attention is given to studying the capabilities of a two-element interferometer in connection with the putting into operation of a Russian-made radio interferometer based on Quasar RT-32 radio telescopes.Comment: 21 pages, 6 figure

    Multiparticle interference in electronic Mach-Zehnder interferometers

    Full text link
    We study theoretically electronic Mach-Zehnder interferometers built from integer quantum Hall edge states, showing that the results of recent experiments can be understood in terms of multiparticle interference effects. These experiments probe the visibility of Aharonov-Bohm (AB) oscillations in differential conductance as an interferometer is driven out of equilibrium by an applied bias, finding a lobe pattern in visibility as a function of voltage. We calculate the dependence on voltage of the visibility and the phase of AB oscillations at zero temperature, taking into account long range interactions between electrons in the same edge for interferometers operating at a filling fraction ν=1\nu=1. We obtain an exact solution via bosonization for models in which electrons interact only when they are inside the interferometer. This solution is non-perturbative in the tunneling probabilities at quantum point contacts. The results match observations in considerable detail provided the transparency of the incoming contact is close to one-half: the variation in visibility with bias voltage consists of a series of lobes of decreasing amplitude, and the phase of the AB-fringes is practically constant inside the lobes but jumps by π\pi at the minima of the visibility. We discuss in addition the consequences of approximations made in other recent treatments of this problem. We also formulate perturbation theory in the interaction strength and use this to study the importance of interactions that are not internal to the interferometer.Comment: 20 pages, 15 figures, final version as publishe

    Advances in Calibration and Imaging Techniques in Radio Interferometry

    Full text link
    This paper summarizes some of the major calibration and image reconstruction techniques used in radio interferometry and describes them in a common mathematical framework. The use of this framework has a number of benefits, ranging from clarification of the fundamentals, use of standard numerical optimization techniques, and generalization or specialization to new algorithms

    The Epistemology of scheduling problems

    Get PDF
    Scheduling is a knowledge-intensive task spanning over many activities in day-to-day life. It deals with the temporally-bound assignment of jobs to resources. Although scheduling has been extensively researched in the AI community for the past 30 years, efforts have primarily focused on specific applications, algorithms, or 'scheduling shells' and no comprehensive analysis exists on the nature of scheduling problems, which provides a formal account of what scheduling is, independently of the way scheduling problems can be approached. Research on KBS development by reuse makes use of ontologies, to provide knowledge-level specifications of reusable KBS components. In this paper we describe a task ontology, which formally characterises the nature of scheduling problems, independently of particular application domains and in-dependently of how the problems can be solved. Our results provide a comprehensive, domain-independent and formally specified refer-ence model for scheduling applications. This can be used as the ba-sis for further analyses of the class of scheduling problems and also as a concrete reusable resource to support knowledge acquisition and system development in scheduling applications

    Observation of the Mott Insulator to Superfluid Crossover of a Driven-Dissipative Bose-Hubbard System

    Get PDF
    Dissipation is ubiquitous in nature and plays a crucial role in quantum systems such as causing decoherence of quantum states. Recently, much attention has been paid to an intriguing possibility of dissipation as an efficient tool for preparation and manipulation of quantum states. Here we report the realization of successful demonstration of a novel role of dissipation in a quantum phase transition using cold atoms. We realize an engineered dissipative Bose-Hubbard system by introducing a controllable strength of two-body inelastic collision via photo-association for ultracold bosons in a three-dimensional optical lattice. In the dynamics subjected to a slow ramp-down of the optical lattice, we find that strong on-site dissipation favors the Mott insulating state: the melting of the Mott insulator is delayed and the growth of the phase coherence is suppressed. The controllability of the dissipation is highlighted by quenching the dissipation, providing a novel method for investigating a quantum many-body state and its non-equilibrium dynamics.Comment: 26 pages, 17 figure

    Interactions in Electronic Mach-Zehnder Interferometers with Copropagating Edge Channels

    Get PDF
    We study Coulomb interactions in the finite bias response of Mach-Zehnder interferometers, which exploit copropagating edge states in the integer quantum Hall effect. Here, interactions are particularly important since the coherent coupling of edge channels is due to a resonant mechanism that is spoiled by inelastic processes. We find that interactions yield a saturation, as a function of bias voltage, of the period-averaged interferometer current, which gives rise to unusual features, such as negative differential conductance, enhancement of the visibility of the current, and nonbounded or even diverging visibility of the differential conductance.Comment: 5 pages, 2 figure
    corecore