17 research outputs found

    Simulation of Discrete-Time Controlled Cable-Driven Parallel Robots on a Trajectory

    Get PDF
    International audienceThis paper addresses the simulation of the state of a discrete-time controlled cable-driven parallel robot (CDPR) with nondeformable or elastic cables over a given trajectory. Being given a CDPR, an arbitrary model for the coiling system and for the control strategy, we exhibit a simulation algorithm that allows one to determine, in a guaranteed way, the platform pose and the cable tensions at any time. We show that such a simulation may require a computing accuracy that imposes to use extended arithmetic and that discrete-time control may lead to drastic differences in the cable tensions as compared to usual continuous time simulation. Hence, the proposed simulation tool allows for a better estimation of the positioning accuracy together with safer estimation of the maximum of the cable tensions

    Kinematics and statics of cable-driven parallel robots by interval-analysis-based methods

    Get PDF
    In the past two decades the work of a growing portion of researchers in robotics focused on a particular group of machines, belonging to the family of parallel manipulators: the cable robots. Although these robots share several theoretical elements with the better known parallel robots, they still present completely (or partly) unsolved issues. In particular, the study of their kinematic, already a difficult subject for conventional parallel manipulators, is further complicated by the non-linear nature of cables, which can exert only efforts of pure traction. The work presented in this thesis therefore focuses on the study of the kinematics of these robots and on the development of numerical techniques able to address some of the problems related to it. Most of the work is focused on the development of an interval-analysis based procedure for the solution of the direct geometric problem of a generic cable manipulator. This technique, as well as allowing for a rapid solution of the problem, also guarantees the results obtained against rounding and elimination errors and can take into account any uncertainties in the model of the problem. The developed code has been tested with the help of a small manipulator whose realization is described in this dissertation together with the auxiliary work done during its design and simulation phases.Negli ultimi decenni il lavoro di una parte sempre maggiore di ricercatori che si occupano di robotica si è concentrato su un particolare gruppo di robot appartenenti alla famiglia dei manipolatori paralleli: i robot a cavi. Nonostante i numerosi studi al riguardo, questi robot presentano ancora oggi numerose problematiche del tutto (o in parte) irrisolte. Lo studio della loro cinematica nello specifico, già complesso per i manipolatori paralleli tradizionali, è ulteriormente complicato dalla natura non lineare dei cavi, i quali possono esercitare sforzi di sola trazione. Il lavoro presentato in questa tesi si concentra dunque sullo studio della cinematica dei robot a cavi e sulla messa a punto di tecniche numeriche in grado di affrontare parte delle problematiche ad essa legate. La maggior parte del lavoro è incentrata sullo sviluppo di una procedura per la soluzione del problema geometrico diretto di un generico manipolatore a cavi basata sull'analisi per intervalli. Questa tecnica di analisi numeirica, oltre a consentire una rapida soluzione del problema, permette di garantire i risultati ottenuti in caso di errori di cancellazione e arrotondamento e consente di considerare eventuali incertezze presenti nel modello del problema. Il codice sviluppato è stato testato attraverso un piccolo prototipo di manipolatore a cavi la cui realizzazione, avvenuta durante il percorso di dottrato, è descritta all'interno dell'elaborato unitamente al lavoro collaterale svolto durante la fase di progettazione e simulazione.Pendant les dernières décennies, le travail d'une partie toujours croissante de chercheurs qui s'occupent de robotique s'est focalisé sur un groupe spécifique de robots qui fait partie de la famille des manipulateurs parallèles: les robots à câbles. Malgré les nombreux études que l'on a consacré à ce sujet, ces robots présentent encore aujourd'hui plusieurs problématiques complètement ou partiellement irrésolues. En particulier l'étude de leur cinématique, qui se révèle déjà complexe pour les manipulateurs parallèles traditionnels, est rendu encore plus compliqué par la nature non linéaire des câbles qui peuvent seulement exercer des efforts de traction. Le travail présenté dans ma thèse concentre donc son attention sur l'étude de la cinématique des robots à câbles et sur la mise au point de techniques numériques capables d'aborder une partie des problématiques liées à cela. La plupart du travail se concentre sur l'élaboration d'un algorithme pour la résolution du problème géométrique direct d'un manipulateur à câbles général qui se fonde sur l'analyse par intervalles. Cette technique d'analyse permet non seulement de résoudre rapidement le problème mais également de garantir les résultats obtenus en cas d'erreur de cancellation et d'arrondi et de prendre en considération les incertitudes éventuellement presentes dans le modèle du problème. Le code développé a été testé grâce à un petit prototype de manipulateur à câbles dont la réalisation, qui a eu lieu pendant le parcours de doctorat, est décrite à l'intérieur du devoir en accord avec la phase de conception du projet et de simulation

    Cable interference control in physical interaction for cable-driven parallel mechanisms

    Get PDF
    Cable interferences and collisions can lead to unpredictable behavior when a human physically interacts with a cable-driven parallel mechanism through its mobile platform. This paper presents an interactive control approach to prevent two cables in interference from folding onto one another, and thus preserve the cable-mechanism geometry. In this approach, the controller generates a repulsive force to prevent the cables from crossing. Therefore, the task is executed within the cable-driven parallel mechanism’s geometric limits. The repulsive force applied by the controller is derived from the gradient of the minimum distance between any pair of cables of the parallel mechanism. In turn, this minimum distance between cables is computed from the Karush-Kuhn-Tucker conditions of the associated optimization problem. The approach was tested and validated on a parallel mechanism driven by seven cables
    corecore