1,069 research outputs found

    Research Trends and Outlooks in Assembly Line Balancing Problems

    Get PDF
    This paper presents the findings from the survey of articles published on the assembly line balancing problems (ALBPs) during 2014-2018. Before proceeding a comprehensive literature review, the ineffectiveness of the previous ALBP classification structures is discussed and a new classification scheme based on the layout configurations of assembly lines is subsequently proposed. The research trend in each layout of assembly lines is highlighted through the graphical presentations. The challenges in the ALBPs are also pinpointed as a technical guideline for future research works

    An Improved Discrete PSO for Tugboat Assignment Problem under a Hybrid Scheduling Rule in Container Terminal

    Get PDF
    In container terminal, tugboat plays vital role in safety of ship docking. Tugboat assignment problem under a hybrid scheduling rule (TAP-HSR) is to determine the assignment between multiple tugboats and ships and the scheduling sequence of ships to minimize the turnaround time of ships. A mixed-integer programming model and the scheduling method are described for TAP-HSR problem. Then an improved discrete PSO (IDPSO) algorithm for TAP-HSR problem is proposed to minimize the turnaround time of ships. In particular, some new redefined PSO operators and the discrete updating rules of position and velocity are developed. The experimental results show that the proposed IDPSO can get better solutions than GA and basic discrete PSO

    Mercedes-Benz USA Labor Planning Dashboard

    Get PDF
    Mercedes-Benz USA specializes in producing high-quality vehicles that exceed customer expectations at a cost-effective rate. The company utilizes a labor planning dashboard that predicts the daily use of their lines at their part distribution centers by allocating their employees to different zones in inbound, outbound, or both. The supervisors manually input all the data to designate employees to various sections within those zones. Our team was tasked with improving and proposing an updated version of the labor planning dashboard by meeting their requirements while making it effective, responsive, and user-friendly. Through trial and error, the new labor planning dashboard combats these issues by eliminating an excessive amount of manual input and creates an automated dashboard by implementing a linear program solver known as an Assignment Problem

    Aircraft Maintenance Routing Problem – A Literature Survey

    Get PDF
    The airline industry has shown significant growth in the last decade according to some indicators such as annual average growth in global air traffic passenger demand and growth rate in the global air transport fleet. This inevitable progress makes the airline industry challenging and forces airline companies to produce a range of solutions that increase consumer loyalty to the brand. These solutions to reduce the high costs encountered in airline operations, prevent delays in planned departure times, improve service quality, or reduce environmental impacts can be diversified according to the need. Although one can refer to past surveys, it is not sufficient to cover the rich literature of airline scheduling, especially for the last decade. This study aims to fill this gap by reviewing the airline operations related papers published between 2009 and 2019, and focus on the ones especially in the aircraft maintenance routing area which seems a promising branch

    Dynamic Facility Layout for Cellular and Reconfigurable Manufacturing using Dynamic Programming and Multi-Objective Metaheuristics

    Get PDF
    The facility layout problem is one of the most classical yet influential problems in the planning of production systems. A well-designed layout minimizes the material handling costs (MHC), personnel flow distances, work in process, and improves the performance of these systems in terms of operating costs and time. Because of this importance, facility layout has a rich literature in industrial engineering and operations research. Facility layout problems (FLPs) are generally concerned with positioning a set of facilities to satisfy some criteria or objectives under certain constraints. Traditional FLPs try to put facilities with the high material flow as close as possible to minimize the MHC. In static facility layout problems (SFLP), the product demands and mixes are considered deterministic parameters with constant values. The material flow between facilities is fixed over the planning horizon. However, in today’s market, manufacturing systems are constantly facing changes in product demands and mixes. These changes make it necessary to change the layout from one period to the other to be adapted to the changes. Consequently, there is a need for dynamic approaches of FLP that aim to generate layouts with high adaptation concerning changes in product demand and mix. This thesis focuses on studying the layout problems, with an emphasis on the changing environment of manufacturing systems. Despite the fact that designing layouts within the dynamic environment context is more realistic, the SFLP is observed to have been remained worthy to be analyzed. Hence, a math-heuristic approach is developed to solve an SFLP. To this aim, first, the facilities are grouped into many possible vertical clusters, second, the best combination of the generated clusters to be in the final layout are selected by solving a linear programming model, and finally, the selected clusters are sequenced within the shop floor. Although the presented math-heuristic approach is effective in solving SFLP, applying approaches to cope with the changing manufacturing environment is required. One of the most well-known approaches to deal with the changing manufacturing environment is the dynamic facility layout problem (DFLP). DFLP suits reconfigurable manufacturing systems since their machinery and material handling devices are reconfigurable to encounter the new necessities for the variations of product mix and demand. In DFLP, the planning horizon is divided into some periods. The goal is to find a layout for each period to minimize the total MHC for all periods and the total rearrangement costs between the periods. Dynamic programming (DP) has been known as one of the effective methods to optimize DFLP. In the DP method, all the possible layouts for every single period are generated and given to DP as its state-space. However, by increasing the number of facilities, it is impossible to give all the possible layouts to DP and only a restricted number of layouts should be fed to DP. This leads to ignoring some layouts and losing the optimality; to deal with this difficulty, an improved DP approach is proposed. It uses a hybrid metaheuristic algorithm to select the initial layouts for DP that lead to the best solution of DP for DFLP. The proposed approach includes two phases. In the first phase, a large set of layouts are generated through a heuristic method. In the second phase, a genetic algorithm (GA) is applied to search for the best subset of layouts to be given to DP. DP, improved by starting with the most promising initial layouts, is applied to find the multi-period layout. Finally, a tabu search algorithm is utilized for further improvement of the solution obtained by improved DP. Computational experiments show that improved DP provides more efficient solutions than DP approaches in the literature. The improved DP can efficiently solve DFLP and find the best layout for each period considering both material handling and layout rearrangement costs. However, rearrangement costs may include some unpredictable costs concerning interruption in production or moving of facilities. Therefore, in some cases, managerial decisions tend to avoid any rearrangements. To this aim, a semi-robust approach is developed to optimize an FLP in a cellular manufacturing system (CMS). In this approach, the pick-up/drop-off (P/D) points of the cells are changed to adapt the layout with changes in product demand and mix. This approach suits more a cellular flexible manufacturing system or a conventional system. A multi-objective nonlinear mixed-integer programming model is proposed to simultaneously search for the optimum number of cells, optimum allocation of facilities to cells, optimum intra- and inter-cellular layout design, and the optimum locations of the P/D points of the cells in each period. A modified non-dominated sorting genetic algorithm (MNSGA-II) enhanced by an improved non-dominated sorting strategy and a modified dynamic crowding distance procedure is used to find Pareto-optimal solutions. The computational experiments are carried out to show the effectiveness of the proposed MNSGA-II against other popular metaheuristic algorithms

    Facility Layout Planning and Job Shop Scheduling – A survey

    Get PDF

    Holistic, data-driven, service and supply chain optimisation: linked optimisation.

    Get PDF
    The intensity of competition and technological advancements in the business environment has made companies collaborate and cooperate together as a means of survival. This creates a chain of companies and business components with unified business objectives. However, managing the decision-making process (like scheduling, ordering, delivering and allocating) at the various business components and maintaining a holistic objective is a huge business challenge, as these operations are complex and dynamic. This is because the overall chain of business processes is widely distributed across all the supply chain participants; therefore, no individual collaborator has a complete overview of the processes. Increasingly, such decisions are automated and are strongly supported by optimisation algorithms - manufacturing optimisation, B2B ordering, financial trading, transportation scheduling and allocation. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems like supply chains. It is well-known that decisions made at one point in supply chains can have significant consequences that ripple through linked production and transportation systems. Recently, global shocks to supply chains (COVID-19, climate change, blockage of the Suez Canal) have demonstrated the importance of these interdependencies, and the need to create supply chains that are more resilient and have significantly reduced impact on the environment. Such interacting decision-making systems need to be considered through an optimisation process. However, the interactions between such decision-making systems are not modelled. We therefore believe that modelling such interactions is an opportunity to provide computational extensions to current optimisation paradigms. This research study aims to develop a general framework for formulating and solving holistic, data-driven optimisation problems in service and supply chains. This research achieved this aim and contributes to scholarship by firstly considering the complexities of supply chain problems from a linked problem perspective. This leads to developing a formalism for characterising linked optimisation problems as a model for supply chains. Secondly, the research adopts a method for creating a linked optimisation problem benchmark by linking existing classical benchmark sets. This involves using a mix of classical optimisation problems, typically relating to supply chain decision problems, to describe different modes of linkages in linked optimisation problems. Thirdly, several techniques for linking supply chain fragmented data have been proposed in the literature to identify data relationships. Therefore, this thesis explores some of these techniques and combines them in specific ways to improve the data discovery process. Lastly, many state-of-the-art algorithms have been explored in the literature and these algorithms have been used to tackle problems relating to supply chain problems. This research therefore investigates the resilient state-of-the-art optimisation algorithms presented in the literature, and then designs suitable algorithmic approaches inspired by the existing algorithms and the nature of problem linkages to address different problem linkages in supply chains. Considering research findings and future perspectives, the study demonstrates the suitability of algorithms to different linked structures involving two sub-problems, which suggests further investigations on issues like the suitability of algorithms on more complex structures, benchmark methodologies, holistic goals and evaluation, processmining, game theory and dependency analysis

    Multi-Period Transportation Network Investment Decision-Making Using Link Ranking and an Econometric Framework

    Get PDF
    Prospective transportation infrastructure projects take numerous years of planning before they are scheduled for construction. Moreover, limited funds are forcing national, regional and local governments to carefully prioritize their investments. Therefore, reliable quantitative tools are needed to help decision-makers choose their investments so that the allocation of available resources is optimized. Prioritization of projects over a multi-period planning horizon is a difficult task given a limited budget and an exhaustive set of possible combinations of when each project will be scheduled for construction. Although multi-period network investment is studied in the literature, its application by public agencies is limited because of the complexities involved in network design problems and the computational time needed to analyze large-scale networks. The contribution of this research is two-fold. First, to understand the relative importance of individual links in a road network and suggest a methodology to rank the links according to importance factors while combining the network improvement investment decisions and subsequent network user response in a feedback loop. One importance factor is based on the link flows at equilibrium. Another factor is based on the importance of the facilities served. A third factor is based on the number of origin-destination pairs served by a link. The proposed methodology is demonstrated with a small test network and a real-scale transportation network. The author performed sensitivity analysis using various budget scenarios and found that, with an increase in budget, the ranking of critical links changes. The second contribution is to extend the single-year discrete network design formulation to a multi-period network design problem (MPNDP) to understand the spatial and temporal patterns in which multi-period network investments are made. Then, using the MPNDP investment results and the network characteristics, the research proposes to utilize an alternate methodology called a Multi-Period Econometric Network Investment Model (MENIM) with which agencies can obtain approximate network investments that are reasonably comparable to the MPNDP. Six medium-to-large scale networks are analyzed using the MPNDP, and the results are used to develop the econometric model. Two additional networks are used to validate the MENIM. Patterns of multi-period network investments from the numerical analysis are extensively discussed along with policy recommendations for public agencies
    • …
    corecore