1,378 research outputs found

    Algorithms for Unit-Disk Graphs and Related Problems

    Get PDF
    In this dissertation, we study algorithms for several problems on unit-disk graphs and related problems. The unit-disk graph can be viewed as an intersection graph of a set of congruent disks. Unit-disk graphs have been extensively studied due to many of their applications, e.g., modeling the topology of wireless sensor networks. Lots of problems on unit-disk graphs have been considered in the literature, such as shortest paths, clique, independent set, distance oracle, diameter, etc. Specifically, we study the following problems in this dissertation: L1 shortest paths in unit-disk graphs, reverse shortest paths in unit-disk graphs, minimum bottleneck moving spanning tree, unit-disk range reporting, distance selection, etc. We develop efficient algorithms for these problems and our results are either first-known solutions or somehow improve the previous work. Given a set P of n points in the plane and a parameter r \u3e 0, a unit-disk graph G(P) can be defined using P as its vertex set and two points of P are connected by an edge if the distance between these two points is at most r. The weight of an edge is one in the unweighted case and is equal to the distance between the two endpoints in the weighted case. Note that the distance between two points can be measured by different metrics, e.g., L1 or L2 metric. In the first problem of L1 shortest paths in unit-disk graphs, we are given a point set P and a source point s ∈ P, the problem is to find all shortest paths from s to all other vertices in the L1 weighted unit-disk graph defined on set P. We present an O(n log n) time algorithm, which matches the Ω(n log n)-time lower bound. In the second problem, we are given a set P of n points, parameters r, λ \u3e 0, and two points s and t of P, the goal is to compute the smallest r such that the shortest path length between s and t in the unit-disk graph with respect to set P and parameter r is at most λ. This problem can be defined in both unweighted and weighted cases. We propose an algorithm of O(⌊λ⌋ · n log n) time and another algorithm of O(n5/4 log7/4 n) time for the unweighted case. We also given an O(n5/4 log5/2 n) time algorithm for the weighted case. In the third problem, we are given a set P of n points that are moving in the plane, the problem is to compute a spanning tree for these moving points that does not change its combinatorial structure during the point movement such that the bottleneck weight of the spanning tree (i.e., the largest Euclidean length of all edges) during the whole movement is minimized. We present an algorithm that runs in O(n4/3 log3 n) time. The fourth problem is unit-disk range reporting in which we are given a set P of n points in the plane and a value r, we need to construct a data structure so that given any query disk of radius r, all points of P in the disk can be reported efficiently. We build a data structure of O(n) space in O(n log n) time that can answer each query in O(k + log n) time, where k is the output size. The time complexity of our algorithm is the same as the previous result but our approach is much simpler. Finally, for the problem of distance selection, we are given a set P of n points in the plane and an integer 1 ≤ k ≤ (n2), the distance selection problem is to find the k-th smallest interpoint distance among all pairs of points of p. We propose an algorithm that runs in O(n4/3 log n) time. Our techniques yield two algorithmic frameworks for solving geometric optimization problems. Many algorithms and techniques developed in this dissertation are quite general and fundamental, and we believe they will find other applications in future

    Succinct Data Structures for Families of Interval Graphs

    Full text link
    We consider the problem of designing succinct data structures for interval graphs with nn vertices while supporting degree, adjacency, neighborhood and shortest path queries in optimal time in the Θ(logn)\Theta(\log n)-bit word RAM model. The degree query reports the number of incident edges to a given vertex in constant time, the adjacency query returns true if there is an edge between two vertices in constant time, the neighborhood query reports the set of all adjacent vertices in time proportional to the degree of the queried vertex, and the shortest path query returns a shortest path in time proportional to its length, thus the running times of these queries are optimal. Towards showing succinctness, we first show that at least nlogn2nloglognO(n)n\log{n} - 2n\log\log n - O(n) bits are necessary to represent any unlabeled interval graph GG with nn vertices, answering an open problem of Yang and Pippenger [Proc. Amer. Math. Soc. 2017]. This is augmented by a data structure of size nlogn+O(n)n\log{n} +O(n) bits while supporting not only the aforementioned queries optimally but also capable of executing various combinatorial algorithms (like proper coloring, maximum independent set etc.) on the input interval graph efficiently. Finally, we extend our ideas to other variants of interval graphs, for example, proper/unit interval graphs, k-proper and k-improper interval graphs, and circular-arc graphs, and design succinct/compact data structures for these graph classes as well along with supporting queries on them efficiently

    Hierarchical Time-Dependent Oracles

    Get PDF
    We study networks obeying \emph{time-dependent} min-cost path metrics, and present novel oracles for them which \emph{provably} achieve two unique features: % (i) \emph{subquadratic} preprocessing time and space, \emph{independent} of the metric's amount of disconcavity; % (ii) \emph{sublinear} query time, in either the network size or the actual Dijkstra-Rank of the query at hand

    Distance Oracles for Interval Graphs via Breadth-First Rank/Select in Succinct Trees

    Get PDF
    We present the first succinct distance oracles for (unweighted) interval graphs and related classes of graphs, using a novel succinct data structure for ordinal trees that supports the mapping between preorder (i.e., depth-first) ranks and level-order (breadth-first) ranks of nodes in constant time. Our distance oracles for interval graphs also support navigation queries - testing adjacency, computing node degrees, neighborhoods, and shortest paths - all in optimal time. Our technique also yields optimal distance oracles for proper interval graphs (unit-interval graphs) and circular-arc graphs. Our tree data structure supports all operations provided by different approaches in previous work, as well as mapping to and from level-order ranks and retrieving the last (first) internal node before (after) a given node in a level-order traversal, all in constant time

    Distance Oracles for Interval Graphs via Breadth-First Rank/Select in Succinct Trees

    Get PDF
    We present the first succinct distance oracles for (unweighted) interval graphs and related classes of graphs, using a novel succinct data structure for ordinal trees that supports the mapping between preorder (i.e., depth-first) ranks and level-order (breadth-first) ranks of nodes in constant time. Our distance oracles for interval graphs also support navigation queries – testing adjacency, computing node degrees, neighborhoods, and shortest paths – all in optimal time. Our technique also yields optimal distance oracles for proper interval graphs (unit-interval graphs) and circular-arc graphs. Our tree data structure supports all operations provided by different approaches in previous work, as well as mapping to and from level-order ranks and retrieving the last (first) internal node before (after) a given node in a level-order traversal, all in constant time
    corecore