13 research outputs found

    Stability and Fairness in Models with a Multiple Membership

    Get PDF
    This article studies a model of coalition formation for the joint production (and finance) of public projects, in which agents may belong to multiple coalitions. We show that, if projects are divisible, there always exists a stable (secession-proof) structure, i.e., a structure in which no coalition would reject a proposed arrangement. When projects are indivisible, stable allocations may fail to exist and, for those cases, we resort to the least core in order to estimate the degree of instability. We also examine the compatibility of stability and fairness in metric environments with indivisible projects, where we also explore the performance of well-known solutions, such as the Shapley value and the nucleolus.Stability, Fairness, Membership, Coalition Formation

    Robust Fault Tolerant uncapacitated facility location

    Get PDF
    In the uncapacitated facility location problem, given a graph, a set of demands and opening costs, it is required to find a set of facilities R, so as to minimize the sum of the cost of opening the facilities in R and the cost of assigning all node demands to open facilities. This paper concerns the robust fault-tolerant version of the uncapacitated facility location problem (RFTFL). In this problem, one or more facilities might fail, and each demand should be supplied by the closest open facility that did not fail. It is required to find a set of facilities R, so as to minimize the sum of the cost of opening the facilities in R and the cost of assigning all node demands to open facilities that did not fail, after the failure of up to \alpha facilities. We present a polynomial time algorithm that yields a 6.5-approximation for this problem with at most one failure and a 1.5 + 7.5\alpha-approximation for the problem with at most \alpha > 1 failures. We also show that the RFTFL problem is NP-hard even on trees, and even in the case of a single failure

    Stability and Fairness in Models with a Multiple Membership

    Get PDF
    This article studies a model of coalition formation for the joint production (and finance) of public projects, in which agents may belong to multiple coalitions. We show that, if projects are divisible, there always exists a stable (secession-proof) structure, i.e., a structure in which no coalition would reject a proposed arrangement. When projects are indivisible, stable allocations may fail to exist and, for those cases, we resort to the least core in order to estimate the degree of instability. We also examine the compatibility of stability and fairness in metric environments with indivisible projects, where we also explore the performance of well-known solutions, such as the Shapley value and the nucleolus.Stability, Fairness, Membership, Coalition Formation

    Stability and fairness in models with a multiple membership

    Get PDF
    This article studies a model of coalition formation for the joint production (and finance) of public projects, in which agents may belong to multiple coalitions. We show that, if projects are divisible, there always exists a stable (secession-proof) structure, i.e., a structure in which no coalition would reject a proposed arrangement. When projects are in- divisible, stable allocations may fail to exist and, for those cases, we resort to the least core in order to estimate the degree of instability. We also examine the compatibility of stability and fairness on metric environments with indivisible projects. To do so, we explore, among other things, the performance of several well-known solutions (such as the Shapley value, the nucleolus, or the Dutta-Ray value) in these environments.stability, fairness, membership, coalition formation

    Author index Volume 49(1994)

    Get PDF

    Voluntary Formation of Communities for the Provision of Public Projects

    Get PDF
    In this paper we examine a collective decision problem, where the set of heterogeneous individuals is partitioned into several groups, each choosing its own policy (e.g., location of a public project) from the given policy space. The model is that of “horizontal product differentiation ” where individuals display distinct preferences over the policy space. We first consider the notion of “efficient ” partition that minimizes the total policy-related costs and aggregate personalized costs. (The latter are incurred when an individual belongs to a group that does not choose her most preferred, ideal, policy.) We then examine “sustainable ” partitions, in which the policy-related costs can be distributed in a way that no subgroup (belonging to the partition or not) has an incentive to break away from the rest and to set its own policy. Our main result is that, with a unidimensional policy space and single-peaked personalized costs, every efficient partition is sustainable. We further describe some important features of efficiency by characterizing the efficient distribution (and number) of policies chosen from the policy space when their cost is small. It turns out that efficiency is achieved when the distribution of policies follows the square root of the density of individuals ’ ideal choices

    Randomized approximation algorithms : facility location, phylogenetic networks, Nash equilibria

    Get PDF
    Despite a great effort, researchers are unable to find efficient algorithms for a number of natural computational problems. Typically, it is possible to emphasize the hardness of such problems by proving that they are at least as hard as a number of other problems. In the language of computational complexity it means proving that the problem is complete for a certain class of problems. For optimization problems, we may consider to relax the requirement of the outcome to be optimal and accept an approximate (i.e., close to optimal) solution. For many of the problems that are hard to solve optimally, it is actually possible to efficiently find close to optimal solutions. In this thesis, we study algorithms for computing such approximate solutions

    Logistic system design of an underground freight pipeline system

    Get PDF
    "July 2014."Dissertation Supervisor: Dr. James Noble.Includes vita.Underground Freight Pipeline (UFP) systems utilize the underground space in metro areas that is otherwise not utilized for freight transportation. Two fundamental logistics issues in the design of a UFP system are network configuration and capsule control. This research develops two capsule control models that minimize total tardiness squared of cargo delivery and associated heuristic algorithms to solve large-scale problems. Two network design models are introduced that minimizes both operational and construction cost of UFP system. The UFP network design Comprehensive Model can only be solved to optimality for small sized problem. To reduce the computational complexity, the UFP network design Two Step Model that is able to generate high quality network design solutions is developed. Then, a case study of a UFP network design in Greater New York area is presented.Includes bibliographical references (pages 159-162)

    Estudio de problemas de clasificaciĂłn supervisada y de localizaciĂłn en redes mediante optimizaciĂłn matemĂĄtica

    Get PDF
    This PhD dissertation addresses several problems in the fields of Supervised Classification and Location Theory using tools and techniques coming from Mathematical Optimization. A brief description of these problems and the methodologies proposed for their analysis and resolution is given below. In the first chapter, the principles of Supervised Classification and Location Theory are discussed in detail, emphasizing the topics studied in this thesis. The following two chapters discuss Supervised Classification problems. In particular, Chapter 2 proposes exact solution approaches for various models of Support Vector Machines (SVM) with ramp loss, a well-known classification method that limits the influence of outliers. The resulting models are analyzed to obtain initial bounds of the big M parameters included in the formulation. Then, solution approaches based on three strategies for obtaining tighter values of the big M parameters are proposed. Two of them require solving a sequence of continuous optimization problems, while the third uses the Lagrangian relaxation. The derived resolution methods are valid for the l1-norm and l2-norm ramp loss formulations. They are tested and compared with existing solution methods in simulated and real-life datasets, showing the efficiency of the developed methodology. Chapter 3 presents a new SVM-based classifier that simultaneously deals with the limitation of the influence of outliers and feature selection. The influence of outliers is taken under control using the ramp loss margin error criterion, while the feature selection process is carried out including a new family of binary variables and several constraints. The resulting model is formulated as a mixed-integer program with big M parameters. The characteristics of the model are analyzed and two different solution approaches (exact and heuristic) are proposed. The performance of the obtained classifier is compared with several classical ones in different datasets. The next two chapters deal with location problems, in particular, two variants of the Maximal Covering Location Problem (MCLP) in networks. These variants respond to the modeling of two different scenarios, with and without uncertainty in the input data. First, Chapter 4 presents the upgrading version of MCLP with edge length modifications on networks. This problem aims at locating p facilities on the nodes (of the network) so as to maximize coverage, considering that the length of the edges can be reduced within a budget. Hence, we have to decide on: the optimal location of p facilities and the optimal edge length reductions. To solve it, we propose three different mixed-integer formulations and a preprocessing phase for fixing variables and removing some constraints. Moreover, we analyze the characteristics of these formulations to strengthen them by proposing valid inequalities. Finally, we compare the three formulations and their corresponding improvements by testing their performance over different datasets. The following chapter, Chapter 5, also considers a MCLP, albeit from the perspective of uncertainty. In particular, this chapter addresses a version of the single-facility MCLP on a network where the demand is distributed along the edges and uncertain with only a known interval estimation. We propose a minmax regret model where the service facility can be located anywhere along the network. Furthermore, we present two polynomial algorithms for finding the location that minimizes the maximal regret assuming that the demand realization is an unknown constant or linear function on each edge. We also include two illustrative examples as well as a computational study to show the potential of the proposed methodology
    corecore