138 research outputs found

    perm mateda: A matlab toolbox of estimation of distribution algorithms for permutation-based combinatorial optimization problems

    Get PDF
    Permutation problems are combinatorial optimization problems whose solutions are naturally codified as permutations. Due to their complexity, motivated principally by the factorial cardinality of the search space of solutions, they have been a recurrent topic for the artificial intelligence and operations research community. Recently, among the vast number of metaheuristic algorithms, new advances on estimation of distribution algorithms (EDAs) have shown outstanding performance when solving some permutation problems. These novel EDAs implement distance-based exponential probability models such as the Mallows and Generalized Mallows models. In this paper, we present a Matlab package, perm mateda, for estimation of distribution algorithms on permutation problems, which has been implemented as an extension to the Mateda-2.0 toolbox of EDAs. Particularly, we provide implementations of the Mallows and Generalized Mallows EDAs under the Kendall’s-τ, Cayley, and Ulam distances. In addition, four classical permutation problems have been also implemented: Traveling Salesman Problem, Permutation Flowshop Scheduling Problem, Linear Ordering Problem, and Quadratic Assignment Problem

    Extending Distance-based Ranking Models In Estimation of Distribution Algorithms

    Get PDF
    Recently, probability models on rankings have been proposed in the field of estimation of distribution algorithms in order to solve permutation-based combinatorial optimisation problems. Particularly, distance-based ranking models, such as Mallows and Generalized Mallows under the Kendall’s-t distance, have demonstrated their validity when solving this type of problems. Nevertheless, there are still many trends that deserve further study. In this paper, we extend the use of distance-based ranking models in the framework of EDAs by introducing new distance metrics such as Cayley and Ulam. In order to analyse the performance of the Mallows and Generalized Mallows EDAs under the Kendall, Cayley and Ulam distances, we run them on a benchmark of 120 instances from four well known permutation problems. The conducted experiments showed that there is not just one metric that performs the best in all the problems. However, the statistical test pointed out that Mallows-Ulam EDA is the most stable algorithm among the studied proposals

    A review on Estimation of Distribution Algorithms in Permutation-based Combinatorial Optimization Problems

    Get PDF
    Estimation of Distribution Algorithms (EDAs) are a set of algorithms that belong to the field of Evolutionary Computation. Characterized by the use of probabilistic models to represent the solutions and the dependencies between the variables of the problem, these algorithms have been applied to a wide set of academic and real-world optimization problems, achieving competitive results in most scenarios. Nevertheless, there are some optimization problems, whose solutions can be naturally represented as permutations, for which EDAs have not been extensively developed. Although some work has been carried out in this direction, most of the approaches are adaptations of EDAs designed for problems based on integer or real domains, and only a few algorithms have been specifically designed to deal with permutation-based problems. In order to set the basis for a development of EDAs in permutation-based problems similar to that which occurred in other optimization fields (integer and real-value problems), in this paper we carry out a thorough review of state-of-the-art EDAs applied to permutation-based problems. Furthermore, we provide some ideas on probabilistic modeling over permutation spaces that could inspire the researchers of EDAs to design new approaches for these kinds of problems

    copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas

    Get PDF
    The use of copula-based models in EDAs (estimation of distribution algorithms) is currently an active area of research. In this context, the copulaedas package for R provides a platform where EDAs based on copulas can be implemented and studied. The package offers complete implementations of various EDAs based on copulas and vines, a group of well-known optimization problems, and utility functions to study the performance of the algorithms. Newly developed EDAs can be easily integrated into the package by extending an S4 class with generic functions for their main components. This paper presents copulaedas by providing an overview of EDAs based on copulas, a description of the implementation of the package, and an illustration of its use through examples. The examples include running the EDAs defined in the package, implementing new algorithms, and performing an empirical study to compare the behavior of different algorithms on benchmark functions and a real-world problem

    Minimization of the Total Traveling Distance and Maximum Distance by Using a Transformed-Based Encoding EDA to Solve the Multiple Traveling Salesmen Problem

    Get PDF
    [[abstract]]Estimation of distribution algorithms (EDAs) have been used to solve numerous hard problems. However, their use with in-group optimization problems has not been discussed extensively in the literature. A well-known in-group optimization problem is the multiple traveling salesmen problem (mTSP), which involves simultaneous assignment and sequencing procedures and are shown in different forms. This paper presents a new algorithm, named EDAMLA, which is based on self-guided genetic algorithm with a minimum loading assignment (MLA) rule.This strategy uses the transformed-based encoding approach instead of direct encoding. The solution space of the proposed method is only ??!. We compare the proposed algorithm against the optimal direct encoding technique, the two-part encoding genetic algorithm, and, in experiments on 34 TSP instances drawn from the TSPLIB, find that its solution space is ??! ( ??−1 ??−1 ). The scale of the experiments exceeded that presented in prior studies. The results show that the proposed algorithm was superior to the two-part encoding genetic algorithm in terms of minimizing the total traveling distance. Notably, the proposed algorithm did not cause a longer traveling distance when the number of salesmen was increased from 3 to 10. The results suggest that EDA researchers should employ the MLA rule instead of direct encoding in their proposed algorithms.[[notice]]補正完
    corecore