2,427 research outputs found

    Solving Challenging Real-World Scheduling Problems

    Get PDF
    This work contains a series of studies on the optimization of three real-world scheduling problems, school timetabling, sports scheduling and staff scheduling. These challenging problems are solved to customer satisfaction using the proposed PEAST algorithm. The customer satisfaction refers to the fact that implementations of the algorithm are in industry use. The PEAST algorithm is a product of long-term research and development. The first version of it was introduced in 1998. This thesis is a result of a five-year development of the algorithm. One of the most valuable characteristics of the algorithm has proven to be the ability to solve a wide range of scheduling problems. It is likely that it can be tuned to tackle also a range of other combinatorial problems. The algorithm uses features from numerous different metaheuristics which is the main reason for its success. In addition, the implementation of the algorithm is fast enough for real-world use.Siirretty Doriast

    Scheduling the Australian football league

    Get PDF
    Generating a schedule for a professional sports league is an extremely demanding task. Good schedules have many benefits for the league, such as higher attendance and TV viewership, lower costs, and increased fairness. The Australian Football League is particularly interesting because of an unusual competition format integrating a single round robin tournament with additional games. Furthermore, several teams have multiple home venues and some venues are shared by multiple teams. This paper presents a 3-phase process to schedule the Australian Football League. The resulting solution outperforms the official schedule with respect to minimizing and balancing travel distance and breaks, while satisfying more requirements

    Making friends on the fly : advances in ad hoc teamwork

    Get PDF
    textGiven the continuing improvements in design and manufacturing processes in addition to improvements in artificial intelligence, robots are being deployed in an increasing variety of environments for longer periods of time. As the number of robots grows, it is expected that they will encounter and interact with other robots. Additionally, the number of companies and research laboratories producing these robots is increasing, leading to the situation where these robots may not share a common communication or coordination protocol. While standards for coordination and communication may be created, we expect that any standards will lag behind the state-of-the-art protocols and robots will need to additionally reason intelligently about their teammates with limited information. This problem motivates the area of ad hoc teamwork in which an agent may potentially cooperate with a variety of teammates in order to achieve a shared goal. We argue that agents that effectively reason about ad hoc teamwork need to exhibit three capabilities: 1) robustness to teammate variety, 2) robustness to diverse tasks, and 3) fast adaptation. This thesis focuses on addressing all three of these challenges. In particular, this thesis introduces algorithms for quickly adapting to unknown teammates that enable agents to react to new teammates without extensive observations. The majority of existing multiagent algorithms focus on scenarios where all agents share coordination and communication protocols. While previous research on ad hoc teamwork considers some of these three challenges, this thesis introduces a new algorithm, PLASTIC, that is the first to address all three challenges in a single algorithm. PLASTIC adapts quickly to unknown teammates by reusing knowledge it learns about previous teammates and exploiting any expert knowledge available. Given this knowledge, PLASTIC selects which previous teammates are most similar to the current ones online and uses this information to adapt to their behaviors. This thesis introduces two instantiations of PLASTIC. The first is a model-based approach, PLASTIC-Model, that builds models of previous teammates' behaviors and plans online to determine the best course of action. The second uses a policy-based approach, PLASTIC-Policy, in which it learns policies for cooperating with past teammates and selects from among these policies online. Furthermore, we introduce a new transfer learning algorithm, TwoStageTransfer, that allows transferring knowledge from many past teammates while considering how similar each teammate is to the current ones. We theoretically analyze the computational tractability of PLASTIC-Model in a number of scenarios with unknown teammates. Additionally, we empirically evaluate PLASTIC in three domains that cover a spread of possible settings. Our evaluations show that PLASTIC can learn to communicate with unknown teammates using a limited set of messages, coordinate with externally-created teammates that do not reason about ad hoc teams, and act intelligently in domains with continuous states and actions. Furthermore, these evaluations show that TwoStageTransfer outperforms existing transfer learning algorithms and enables PLASTIC to adapt even better to new teammates. We also identify three dimensions that we argue best describe ad hoc teamwork scenarios. We hypothesize that these dimensions are useful for analyzing similarities among domains and determining which can be tackled by similar algorithms in addition to identifying avenues for future research. The work presented in this thesis represents an important step towards enabling agents to adapt to unknown teammates in the real world. PLASTIC significantly broadens the robustness of robots to their teammates and allows them to quickly adapt to new teammates by reusing previously learned knowledge.Computer Science

    Boosting Studies of Multi-Agent Reinforcement Learning on Google Research Football Environment: the Past, Present, and Future

    Full text link
    Even though Google Research Football (GRF) was initially benchmarked and studied as a single-agent environment in its original paper, recent years have witnessed an increasing focus on its multi-agent nature by researchers utilizing it as a testbed for Multi-Agent Reinforcement Learning (MARL). However, the absence of standardized environment settings and unified evaluation metrics for multi-agent scenarios hampers the consistent understanding of various studies. Furthermore, the challenging 5-vs-5 and 11-vs-11 full-game scenarios have received limited thorough examination due to their substantial training complexities. To address these gaps, this paper extends the original environment by not only standardizing the environment settings and benchmarking cooperative learning algorithms across different scenarios, including the most challenging full-game scenarios, but also by discussing approaches to enhance football AI from diverse perspectives and introducing related research tools. Specifically, we provide a distributed and asynchronous population-based self-play framework with diverse pre-trained policies for faster training, two football-specific analytical tools for deeper investigation, and an online leaderboard for broader evaluation. The overall expectation of this work is to advance the study of Multi-Agent Reinforcement Learning on Google Research Football environment, with the ultimate goal of benefiting real-world sports beyond virtual games

    Proceedings of Mathsport international 2017 conference

    Get PDF
    Proceedings of MathSport International 2017 Conference, held in the Botanical Garden of the University of Padua, June 26-28, 2017. MathSport International organizes biennial conferences dedicated to all topics where mathematics and sport meet. Topics include: performance measures, optimization of sports performance, statistics and probability models, mathematical and physical models in sports, competitive strategies, statistics and probability match outcome models, optimal tournament design and scheduling, decision support systems, analysis of rules and adjudication, econometrics in sport, analysis of sporting technologies, financial valuation in sport, e-sports (gaming), betting and sports

    Modeling outcomes of soccer matches

    Get PDF
    We compare various extensions of the Bradley-Terry model and a hierarchical Poisson log-linear model in terms of their performance in predicting the outcome of soccer matches (win, draw, or loss). The parameters of the Bradley-Terry extensions are estimated by maximizing the log-likelihood, or an appropriately penalized version of it, while the posterior densities of the parameters of the hierarchical Poisson log-linear model are approximated using integrated nested Laplace approximations. The prediction performance of the various modeling approaches is assessed using a novel, context-specific framework for temporal validation that is found to deliver accurate estimates of the test error. The direct modeling of outcomes via the various Bradley-Terry extensions and the modeling of match scores using the hierarchical Poisson log-linear model demonstrate similar behavior in terms of predictive performance
    • …
    corecore