670 research outputs found

    An Overview and Categorization of Approaches for Train Timetable Generation

    Get PDF
    A train timetable is a crucial component of railway transportation systems as it directly impacts the system’s performance and the customer satisfaction. Various approaches can be found in the literature that deal with timetable generation. However, the approaches proposed in the literature differ significantly in terms of the use case for which they are in tended. Differences in objective function, timetable periodicity, and solution methods have led to a confusing number of works on this topic. Therefore, this paper presents a com pact literature review of approaches to train timetable generation. The reviewed papers are briefly summarized and categorized by objective function and periodicity. Special emphasis is given to approaches that have been applied to real-world railway data

    Optimization Methods in Modern Transportation Systems

    Get PDF
    One of the greatest challenges in the public transportation network is the optimization of the passengers waiting time, where it is necessary to find a compromise between the satisfaction of the passengers and the requirements of the transport companies. This paper presents a detailed review of the available literature dealing with the problem of passenger transport in order to optimize the passenger waiting time at the station and to meet the requirements of companies (maximize profits or minimize cost). After a detailed discussion, the paper clarifies the most important objectives in solving a timetabling problem: the requirements and satisfaction of passengers, passenger waiting time and capacity of vehicles. At the end, the appropriate algorithms for solving the set of optimization models are presented

    Railway timetabling from an operations research

    Get PDF
    In this paper we describe Operations Research (OR) models andtechniques that can be used for determining (cyclic) railwaytimetables. We discuss the two aspects of railway timetabling: (ii)the determination of arrival and departure times of the trains atthe stations and other relevant locations such as junctions andbridges, and (iiii) the assignment of each train to an appropriateplatform and corresponding inbound and outbound routes in everystation. Moreover, we discuss robustness aspects of bothsubproblems.

    Automated university lecture timetable using Heuristic Approach

    Get PDF
    There are different approaches used in automating course timetabling problem in tertiary institution. This paper present a combination of genetic algorithm (GA) and simulated annealing (SA) to have a heuristic approach (HA) for solving course timetabling problem in Federal University Wukari (FUW). The heuristic approach was implemented considering the soft and hard constraints and the survival for the fittest. The period and space complexity was observed. This helps in matching the number of rooms with the number of courses. Keywords: Heuristic approach (HA), Genetic algorithm (GA), Course Timetabling, Space Complexity

    Operations research in passenger railway transportation

    Get PDF
    In this paper, we give an overview of state-of-the-art OperationsResearch models and techniques used in passenger railwaytransportation. For each planning phase (strategic, tactical andoperational), we describe the planning problems arising there anddiscuss some models and algorithms to solve them. We do not onlyconsider classical, well-known topics such as timetabling, rollingstock scheduling and crew scheduling, but we also discuss somerecently developed topics as shunting and reliability oftimetables.Finally, we focus on several practical aspects for each of theseproblems at the largest Dutch railway operator, NS Reizigers.passenger railway transportation;operation research;planning problems

    Solving the Periodic Scheduling Problem: An Assignment Approach in Non-Periodic Networks

    Get PDF
    The periodic event scheduling problem (PESP) is a well researched problem used for finding good periodic timetables in public transport. While it is based on a periodic network consisting of events and activities which are repeated every period, we propose a new periodic timetabling model using a non-periodic network. This is a first step towards the goal of integrating periodic timetabling with other planning steps taking place in the aperiodic network, e.g. passenger assignment or delay management. In this paper, we develop the new model, show how we can reduce its size and prove its equivalence to PESP. We also conduct computational experiments on close-to real-world data from Lower Saxony, a region in northern Germany, and see that the model can be solved in a reasonable amount of time

    Towards Improved Robustness of Public Transport by a Machine-Learned Oracle

    Get PDF
    The design and optimization of public transport systems is a highly complex and challenging process. Here, we focus on the trade-off between two criteria which shall make the transport system attractive for passengers: their travel time and the robustness of the system. The latter is time-consuming to evaluate. A passenger-based evaluation of robustness requires a performance simulation with respect to a large number of possible delay scenarios, making this step computationally very expensive. For optimizing the robustness, we hence apply a machine-learned oracle from previous work which approximates the robustness of a public transport system. We apply this oracle to bi-criteria optimization of integrated public transport planning (timetabling and vehicle scheduling) in two ways: First, we explore a local search based framework studying several variants of neighborhoods. Second, we evaluate a genetic algorithm. Computational experiments with artificial and close to real-word benchmark datasets yield promising results. In all cases, an existing pool of solutions (i.e., public transport plans) can be significantly improved by finding a number of new non-dominated solutions, providing better and different trade-offs between robustness and travel time

    A Matching Approach for Periodic Timetabling

    Get PDF
    The periodic event scheduling problem (PESP) is a well studied problem known as intrinsically hard, but with important applications mainly for finding good timetables in public transportation. In this paper we consider PESP in public transportation, but in a reduced version (r-PESP) in which the driving and waiting times of the vehicles are fixed to their lower bounds. This results in a still NP-hard problem which has less variables, since only one variable determines the schedule for a whole line. We propose a formulation for r-PESP which is based on scheduling the lines. This enables us on the one hand to identify a finite candidate set and an exact solution approach. On the other hand, we use this formulation to derive a matching-based heuristic for solving PESP. Our experiments on close to real-world instances from LinTim show that our heuristic is able to compute competitive timetables in a very short runtime
    corecore