888 research outputs found

    Partitioning networks into cliques: a randomized heuristic approach

    Get PDF
    In the context of community detection in social networks, the term community can be grounded in the strict way that simply everybody should know each other within the community. We consider the corresponding community detection problem. We search for a partitioning of a network into the minimum number of non-overlapping cliques, such that the cliques cover all vertices. This problem is called the clique covering problem (CCP) and is one of the classical NP-hard problems. For CCP, we propose a randomized heuristic approach. To construct a high quality solution to CCP, we present an iterated greedy (IG) algorithm. IG can also be combined with a heuristic used to determine how far the algorithm is from the optimum in the worst case. Randomized local search (RLS) for maximum independent set was proposed to find such a bound. The experimental results of IG and the bounds obtained by RLS indicate that IG is a very suitable technique for solving CCP in real-world graphs. In addition, we summarize our basic rigorous results, which were developed for analysis of IG and understanding of its behavior on several relevant graph classes

    GraphCombEx: A Software Tool for Exploration of Combinatorial Optimisation Properties of Large Graphs

    Full text link
    We present a prototype of a software tool for exploration of multiple combinatorial optimisation problems in large real-world and synthetic complex networks. Our tool, called GraphCombEx (an acronym of Graph Combinatorial Explorer), provides a unified framework for scalable computation and presentation of high-quality suboptimal solutions and bounds for a number of widely studied combinatorial optimisation problems. Efficient representation and applicability to large-scale graphs and complex networks are particularly considered in its design. The problems currently supported include maximum clique, graph colouring, maximum independent set, minimum vertex clique covering, minimum dominating set, as well as the longest simple cycle problem. Suboptimal solutions and intervals for optimal objective values are estimated using scalable heuristics. The tool is designed with extensibility in mind, with the view of further problems and both new fast and high-performance heuristics to be added in the future. GraphCombEx has already been successfully used as a support tool in a number of recent research studies using combinatorial optimisation to analyse complex networks, indicating its promise as a research software tool

    Distributed (Δ+1)(\Delta+1)-Coloring in Sublogarithmic Rounds

    Full text link
    We give a new randomized distributed algorithm for (Δ+1)(\Delta+1)-coloring in the LOCAL model, running in O(logΔ)+2O(loglogn)O(\sqrt{\log \Delta})+ 2^{O(\sqrt{\log \log n})} rounds in a graph of maximum degree~Δ\Delta. This implies that the (Δ+1)(\Delta+1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds of Ω(min(lognloglogn,logΔloglogΔ))\Omega \left( \min \left( \sqrt{\frac{\log n}{\log \log n}}, \frac{\log \Delta}{\log \log \Delta} \right) \right) by Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Our algorithm also extends to list-coloring where the palette of each node contains Δ+1\Delta+1 colors. We extend the set of distributed symmetry-breaking techniques by performing a decomposition of graphs into dense and sparse parts

    A Tutorial on Clique Problems in Communications and Signal Processing

    Full text link
    Since its first use by Euler on the problem of the seven bridges of K\"onigsberg, graph theory has shown excellent abilities in solving and unveiling the properties of multiple discrete optimization problems. The study of the structure of some integer programs reveals equivalence with graph theory problems making a large body of the literature readily available for solving and characterizing the complexity of these problems. This tutorial presents a framework for utilizing a particular graph theory problem, known as the clique problem, for solving communications and signal processing problems. In particular, the paper aims to illustrate the structural properties of integer programs that can be formulated as clique problems through multiple examples in communications and signal processing. To that end, the first part of the tutorial provides various optimal and heuristic solutions for the maximum clique, maximum weight clique, and kk-clique problems. The tutorial, further, illustrates the use of the clique formulation through numerous contemporary examples in communications and signal processing, mainly in maximum access for non-orthogonal multiple access networks, throughput maximization using index and instantly decodable network coding, collision-free radio frequency identification networks, and resource allocation in cloud-radio access networks. Finally, the tutorial sheds light on the recent advances of such applications, and provides technical insights on ways of dealing with mixed discrete-continuous optimization problems

    Scalable Kernelization for Maximum Independent Sets

    Get PDF
    The most efficient algorithms for finding maximum independent sets in both theory and practice use reduction rules to obtain a much smaller problem instance called a kernel. The kernel can then be solved quickly using exact or heuristic algorithms---or by repeatedly kernelizing recursively in the branch-and-reduce paradigm. It is of critical importance for these algorithms that kernelization is fast and returns a small kernel. Current algorithms are either slow but produce a small kernel, or fast and give a large kernel. We attempt to accomplish both of these goals simultaneously, by giving an efficient parallel kernelization algorithm based on graph partitioning and parallel bipartite maximum matching. We combine our parallelization techniques with two techniques to accelerate kernelization further: dependency checking that prunes reductions that cannot be applied, and reduction tracking that allows us to stop kernelization when reductions become less fruitful. Our algorithm produces kernels that are orders of magnitude smaller than the fastest kernelization methods, while having a similar execution time. Furthermore, our algorithm is able to compute kernels with size comparable to the smallest known kernels, but up to two orders of magnitude faster than previously possible. Finally, we show that our kernelization algorithm can be used to accelerate existing state-of-the-art heuristic algorithms, allowing us to find larger independent sets faster on large real-world networks and synthetic instances.Comment: Extended versio
    corecore