18,720 research outputs found

    An optical solution for the set splitting problem

    Full text link
    We describe here an optical device, based on time-delays, for solving the set splitting problem which is well-known NP-complete problem. The device has a graph-like structure and the light is traversing it from a start node to a destination node. All possible (potential) paths in the graph are generated and at the destination we will check which one satisfies completely the problem's constrains.Comment: 10 pages, 2 figure

    Exact Cover with light

    Full text link
    We suggest a new optical solution for solving the YES/NO version of the Exact Cover problem by using the massive parallelism of light. The idea is to build an optical device which can generate all possible solutions of the problem and then to pick the correct one. In our case the device has a graph-like representation and the light is traversing it by following the routes given by the connections between nodes. The nodes are connected by arcs in a special way which lets us to generate all possible covers (exact or not) of the given set. For selecting the correct solution we assign to each item, from the set to be covered, a special integer number. These numbers will actually represent delays induced to light when it passes through arcs. The solution is represented as a subray arriving at a certain moment in the destination node. This will tell us if an exact cover does exist or not.Comment: 20 pages, 4 figures, New Generation Computing, accepted, 200

    Solving the subset-sum problem with a light-based device

    Full text link
    We propose a special computational device which uses light rays for solving the subset-sum problem. The device has a graph-like representation and the light is traversing it by following the routes given by the connections between nodes. The nodes are connected by arcs in a special way which lets us to generate all possible subsets of the given set. To each arc we assign either a number from the given set or a predefined constant. When the light is passing through an arc it is delayed by the amount of time indicated by the number placed in that arc. At the destination node we will check if there is a ray whose total delay is equal to the target value of the subset sum problem (plus some constants).Comment: 14 pages, 6 figures, Natural Computing, 200

    The computational complexity of density functional theory

    Full text link
    Density functional theory is a successful branch of numerical simulations of quantum systems. While the foundations are rigorously defined, the universal functional must be approximated resulting in a `semi'-ab initio approach. The search for improved functionals has resulted in hundreds of functionals and remains an active research area. This chapter is concerned with understanding fundamental limitations of any algorithmic approach to approximating the universal functional. The results based on Hamiltonian complexity presented here are largely based on \cite{Schuch09}. In this chapter, we explain the computational complexity of DFT and any other approach to solving electronic structure Hamiltonians. The proof relies on perturbative gadgets widely used in Hamiltonian complexity and we provide an introduction to these techniques using the Schrieffer-Wolff method. Since the difficulty of this problem has been well appreciated before this formalization, practitioners have turned to a host approximate Hamiltonians. By extending the results of \cite{Schuch09}, we show in DFT, although the introduction of an approximate potential leads to a non-interacting Hamiltonian, it remains, in the worst case, an NP-complete problem.Comment: Contributed chapter to "Many-Electron Approaches in Physics, Chemistry and Mathematics: A Multidisciplinary View
    • …
    corecore