373 research outputs found

    Urban Transit Network Design Problems: A Review of Population-based Metaheuristics

    Get PDF
    The urban transit network design problem (UTNDP) involves the development of a transit route set and associated schedules for an urban public transit system. The design of efficient public transit systems is widely considered as a viable option for the economic, social, and physical structure of an urban setting. This paper reviews four well-known population-based metaheuristics that have been employed and deemed potentially viable for tackling the UTNDP. The aim is to give a thorough review of the algorithms and identify the gaps for future research directions

    Ant Colony System for a Dynamic Vehicle Routing Problem

    Get PDF
    An aboundant literature on vehicle routing problems is available. However, most of the work deals with static problems, where all data are known in advance, i.e. before the optimization has started. The technological advances of the last few years give rise to a new class of problems, namely the dynamic vehicle routing problems, where new orders are received as time progresses and must be dynamically incorporated into an evolving schedule. In this paper a dynamic vehicle routing problem is examined and a solving strategy, based on the Ant Colony System paradigm, is proposed. Some new public domain benchmark problems are defined, and the algorithm we propose is tested on them. Finally, the method we present is applied to a realistic case study, set up in the city of Lugano (Switzerland

    A Hybrid of Ant Colony Optimization Algorithm and Simulated Annealing for Classification Rules

    Get PDF
    Ant colony optimization (ACO) is a metaheuristic approach inspired from the behaviour of natural ants and can be used to solve a variety of combinatorial optimization problems. Classification rule induction is one of the problems solved by the Ant-miner algorithm, a variant of ACO, which was initiated by Parpinelli in 2001. Previous studies have shown that ACO is a promising machine learning technique to generate classification rules. However, the Ant-miner is less class focused since the rule’s class is assigned after the rule was constructed. There is also the case where the Ant-miner cannot find any optimal solution for some data sets. Thus, this thesis proposed two variants of hybrid ACO with simulated annealing (SA) algorithm for solving problem of classification rule induction. In the first proposed algorithm, SA is used to optimize the rule's discovery activity by an ant. Benchmark data sets from various fields were used to test the proposed algorithms. Experimental results obtained from this proposed algorithm are comparable to the results of the Ant-miner and other well-known rule induction algorithms in terms of rule accuracy, but are better in terms of rule simplicity. The second proposed algorithm uses SA to optimize the terms selection while constructing a rule. The algorithm fixes the class before rule's construction. Since the algorithm fixed the class before each rule's construction, a much simpler heuristic and fitness function is proposed. Experimental results obtained from the proposed algorithm are much higher than other compared algorithms, in terms of predictive accuracy. The successful work on hybridization of ACO and SA algorithms has led to the improved learning ability of ACO for classification. Thus, a higher predictive power classification model for various fields could be generated

    Applying metaheuristics to feeder bus network design problem

    Get PDF
    Master'sMASTER OF ENGINEERIN

    ОПТИМАЛЬНАЯ МАРШРУТИЗАЦИЯ ВОЗДУШНЫХ СУДОВ И МАШИН СКОРОЙ ПОМОЩИ В ЛОГИСТИКЕ ПРИ СТИХИЙНЫХ БЕДСТВИЯХ

    Get PDF
    One of the most vital aspects of emergency management studies is the development and examination of post-disaster search and rescue activities and treatment facilities. One of such issues to be considered while performing these operations is to reach the disaster victims within minimum time and to plan disaster logistics in the most efficient manner possible. In this study, the problem of planning debris scanning activities with Unmanned Aerial Vehicles after an earthquake and transporting the injured people to the hospitals by ambulances within minimum time was discussed, and mathematical models were developed to solve the problem. The ambulance routing problem and the mathematical model to be used in the solution to the problem are discussed for the first time in the literature. The developed model was tested on the problem sets created by taking into account the data of the province under investigation.Одним из наиболее важных аспектов исследований по управлению рисками и чрезвычайными ситуациями является разработка и изучение поисково-спасательных мероприятий и очистных сооружений после стихийных бедствий. Одним из вопросов, которые необходимо учитывать при выполнении этих операций, является обеспечение доступа к жертвам стихийных бедствий в минимальные сроки и планирование логистики в случае стихийных бедствий наиболее эффективным способом. В данном исследовании рассматривается проблема планирования работ по спасению с помощью беспилотных летательных аппаратов после землетрясения и транспортировки пострадавших людей в больницы на машинах скорой помощи за минимальное время. Для решения этой проблемы были разработаны и предложены математические модели. Впервые рассматривается задача маршрутизации скорой помощи и математическая модель, которая будет использоваться для решения этой задачи. Разработанная модель была протестирована на множествах задач, созданных с учетом реальных данных исследуемой провинции Турции

    Optimum buckling design of composite stiffened panels using ant colony algorithm

    Get PDF
    Optimal design of laminated composite stiffened panels of symmetric and balanced layup with different number of T-shape stiffeners is investigated and presented. The stiffened panels are simply supported and subjected to uniform biaxial compressive load. In the optimization for the maximum buckling load without weight penalty, the panel skin and the stiffened laminate stacking sequence, thickness and the height of the stiffeners are chosen as design variables. The optimization is carried out by applying an ant colony algorithm (ACA) with the ply contiguous constraint taken into account. The finite strip method is employed in the buckling analysis of the stiffened panels. The results shows that the buckling load increases dramatically with the number of stiffeners at first, and then has only a small improvement after the number of stiffeners reaches a certain value. An optimal layup of the skin and stiffener laminate has also been obtained by using the ACA. The methods presented in this paper should be applicable to the design of stiffened composite panels in similar loading conditions

    Improving the Power Quality in Tehran Metro Line-Two Using the Ant Colony Algorithm

    Get PDF
    This research aims to survey the improvement of power quality in Tehran metro line 2 using the ant colony algorithm and to investigate all the factors affecting the achievement of this goal. In order to put Tehran on the road of sustainable development, finding a solution for dealing with air pollution is essential. The use of public transportation, especially metro, is one of the ways to achieve this goal. Since the highest share of pollutants in Tehran belongs to cars and mobile sources, relative statistical indicators are estimated through assuming the effect of metro lines development and subsequently reduction of traffic on power quality index
    corecore