4,120 research outputs found

    Unit Interval Editing is Fixed-Parameter Tractable

    Full text link
    Given a graph~GG and integers k1k_1, k2k_2, and~k3k_3, the unit interval editing problem asks whether GG can be transformed into a unit interval graph by at most k1k_1 vertex deletions, k2k_2 edge deletions, and k3k_3 edge additions. We give an algorithm solving this problem in time 2O(klogk)(n+m)2^{O(k\log k)}\cdot (n+m), where k:=k1+k2+k3k := k_1 + k_2 + k_3, and n,mn, m denote respectively the numbers of vertices and edges of GG. Therefore, it is fixed-parameter tractable parameterized by the total number of allowed operations. Our algorithm implies the fixed-parameter tractability of the unit interval edge deletion problem, for which we also present a more efficient algorithm running in time O(4k(n+m))O(4^k \cdot (n + m)). Another result is an O(6k(n+m))O(6^k \cdot (n + m))-time algorithm for the unit interval vertex deletion problem, significantly improving the algorithm of van 't Hof and Villanger, which runs in time O(6kn6)O(6^k \cdot n^6).Comment: An extended abstract of this paper has appeared in the proceedings of ICALP 2015. Update: The proof of Lemma 4.2 has been completely rewritten; an appendix is provided for a brief overview of related graph classe

    Rainbow Connection Number and Connected Dominating Sets

    Full text link
    Rainbow connection number rc(G) of a connected graph G is the minimum number of colours needed to colour the edges of G, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we show that for every connected graph G, with minimum degree at least 2, the rainbow connection number is upper bounded by {\gamma}_c(G) + 2, where {\gamma}_c(G) is the connected domination number of G. Bounds of the form diameter(G) \leq rc(G) \leq diameter(G) + c, 1 \leq c \leq 4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, AT-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G) \leq 3.radius(G). In most of these cases, we also demonstrate the tightness of the bounds. An extension of this idea to two-step dominating sets is used to show that for every connected graph on n vertices with minimum degree {\delta}, the rainbow connection number is upper bounded by 3n/({\delta} + 1) + 3. This solves an open problem of Schiermeyer (2009), improving the previously best known bound of 20n/{\delta} by Krivelevich and Yuster (2010). Moreover, this bound is seen to be tight up to additive factors by a construction of Caro et al. (2008).Comment: 14 page

    Solving the Canonical Representation and Star System Problems for Proper Circular-Arc Graphs in Log-Space

    Get PDF
    We present a logspace algorithm that constructs a canonical intersection model for a given proper circular-arc graph, where `canonical' means that models of isomorphic graphs are equal. This implies that the recognition and the isomorphism problems for this class of graphs are solvable in logspace. For a broader class of concave-round graphs, that still possess (not necessarily proper) circular-arc models, we show that those can also be constructed canonically in logspace. As a building block for these results, we show how to compute canonical models of circular-arc hypergraphs in logspace, which are also known as matrices with the circular-ones property. Finally, we consider the search version of the Star System Problem that consists in reconstructing a graph from its closed neighborhood hypergraph. We solve it in logspace for the classes of proper circular-arc, concave-round, and co-convex graphs.Comment: 19 pages, 3 figures, major revisio

    On the geometric dilation of closed curves, graphs, and point sets

    Full text link
    The detour between two points u and v (on edges or vertices) of an embedded planar graph whose edges are curves is the ratio between the shortest path in in the graph between u and v and their Euclidean distance. The maximum detour over all pairs of points is called the geometric dilation. Ebbers-Baumann, Gruene and Klein have shown that every finite point set is contained in a planar graph whose geometric dilation is at most 1.678, and some point sets require graphs with dilation at least pi/2 = 1.57... We prove a stronger lower bound of 1.00000000001*pi/2 by relating graphs with small dilation to a problem of packing and covering the plane by circular disks. The proof relies on halving pairs, pairs of points dividing a given closed curve C in two parts of equal length, and their minimum and maximum distances h and H. Additionally, we analyze curves of constant halving distance (h=H), examine the relation of h to other geometric quantities and prove some new dilation bounds.Comment: 31 pages, 16 figures. The new version is the extended journal submission; it includes additional material from a conference submission (ref. [6] in the paper

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure
    corecore