727 research outputs found

    Méthodes de décomposition pour la planification à moyen terme de la production hydroélectrique sous incertitude

    Get PDF
    RÉSUMÉ : Dans cette thèse, nous considérons le problème de planification à moyen terme (PPMT) de la production hydroélectrique sous incertitude visant la gestion de réservoirs sur un horizon de plusieurs mois. Nous nous intéressons particulièrement aux systèmes de haute dimension composés de dizaines de réservoirs et exploités par les grands producteurs hydroélectriques tels qu'Hydro-Québec. Ces producteurs exploitent des systèmes complexes à hauteur de chute et rendement variables avec des coûts fixes et des délais de démarrage et d'arrêt de groupes. En général, une grande variété de contraintes opérationnelles serrées doivent être satisfaites. Ces systèmes sont habituellement exploités dans un environnement décisionnel hautement incertain. Les modèles d'optimisation à moyen terme de la production considèrent généralement un pas de temps hebdomadaire ou mensuel et reposent sur une représentation simplifiée du système de production. Les courbes de production sont généralement convexes et linéaires par morceaux et les coûts fixe de transaction ou d'arrêt/démarrage sont généralement négligés. La principale source de complexité du PPMT et généralement attribuable à la prise en compte de l'incertitude. Les paramètres aléatoires du PPMT sont généralement caractérisés par une distribution de probabilité multidimensionnelle, continue et asymétrique. Ces caractéristiques sont difficiles à représenter de façon précise dans les modèles d'optimisation. Au cours des dernières décennies, plusieurs méthodes d'optimisation stochastique ont été proposées dans la littérature en gestion de réservoirs. La plupart de ces méthodes sont limitées aux systèmes de dimension modeste en raison de la malédiction de la dimension. Les méthodes basées sur une représentation par arbre de scénarios de l'incertitude comptent parmi les rares approches qui sont applicables aux grands systèmes hydroélectriques. Ces méthodes fonctionnent en remplaçant la distribution continue d'origine par une distribution discrète contenant un nombre fini de réalisations possibles. Ainsi, le programme stochastique à résoudre peut être reformulé en un programme équivalent déterministe dont la taille est proportionnelle à la dimension du système contrôlé. La principale limitation de l'approche par arbre de scénarios est liée à l'augmentation exponentielle de la taille du programme équivalent déterministe avec le niveau de branchement de l'arbre. En pratique, le programme équivalent déterministe doit être résolu par une méthode de décomposition qui exploite sa structure mathématique spéciale. L'objectif de cette thèse consiste à développer et à évaluer différentes méthodes de décomposition permettant de résoudre le PPMT sous incertitude. La thèse est divisée en trois articles. Le premier article démontre l'applicabilité de l'algorithme de progressive hedging (APH), une méthode de décomposition par scénario, pour faire la gestion de réservoirs hydroélectriques multiannuels dans un environnement hautement variable au Canada. L'APH est une méthode classique conçue pour résoudre des programme stochastique multiétape généraux posés sur un arbre de scénarios. Cette méthode fonctionne en appliquant une relaxation Lagrangienne augmentée aux contraintes de non-anticipativité (CNA) du programme stochastique. À chaque itération de l'APH, une série de sous-problèmes doivent être résolus. Chaque sous-problème correspond à une version déterministe du programme stochastique défini sur un scénario particulier de l'arbre. Des termes linéaires et quadratiques sont ajoutés à la fonction objectif des sous-problèmes afin de pénaliser les violations des CNA. Une des principales limitations de l'APH est liée à l'augmentation exponentielle du nombre de sous-problèmes et de termes de pénalité avec le niveau de branchement de l'arbre. Ce phénomène peut rendre l'application de l'APH particulièrement difficile lorsque l'arbre de scénarios considéré contient plusieurs étapes de branchement et couvre un horizon réparti sur des dizaines de périodes. Ces situations surviennent fréquemment lorsque des réservoirs multiannuels sont considérés. Une autre limitation importante de l'APH est causée par l'augmentation du niveau de difficulté des CNA avec la variabilité des scénarios contenus dans l'arbre. Ce phénomène complique l'application de l'APH dans les régions hydroclimatiques caractérisées par une forte variabilité saisonnière et interannuelle. Ces deux types de limitations peuvent ralentir considérablement le taux de convergence et le temps de calcul par itération de l'APH et rendre cette méthode inapplicable en pratique. Dans l'ensemble, très peu de chercheurs ont appliqué l'APH en gestion de réservoirs hydroélectriques. Les rares études portant sur ce type d'application considèrent un horizon de courte portée avec arbre de scénarios de petite taille avec un niveau de variabilité modeste. Dans cette étude, nous appliquons l'APH à la gestion de l'ensemble du parc d'Hydro-Québec sur un horizon de 92 semaines. L'arbre de scénarios considéré contient six étapes de branchement et 1635 noeuds. L'APH est particulièrement bien adaptée pour cette application étant donné du fait que la société d'État dispose actuellement d'un modèle déterministe opérationnel pour faire la planification à moyen terme de la production. En fait, seulement quelques modifications mineures sont nécessaires pour transformer le modèle déterministe actuel en un modèle stochastique basé sur l'APH. Le deuxième article présente une nouvelle approche permettant de réduire le temps de calcul de l'APH lors la résolution de programme stochastique généraux. L'approche proposée fonctionne en appliquant un schéma de décomposition multiscénario au programme stochastique conçu de manière à minimiser le nombre de CNA auxquelles une RLA doit être appliquée. Chaque sous-problème prend la forme d'un programme stochastique défini sur un groupe de scénarios. Les CNA liant les scénarios d'un même groupe sont représentées implicitement dans les sous-problèmes en adoptant une formulation par groupe de scénarios et par noeud plutôt qu'en utilisant le sytème d'indice traditionnel exprimé par période et par scénario. Seulement les CNA liant les différents groupes de scénarios sont représentées explicitement sous forme de contraintes d'égalité linéaires et relaxées. La méthode proposée est évaluée numériquement sur un problème de gestion de réservoirs hydroélectriques au Québec. Les résultats de cette expérience démontrent que notre méthode de partitionnement optimal a plusieurs avantages par rapport au schéma de décomposition par scénario traditionnel. Premièrement, elle permet de diminuer le temps de calcul par itération en réduisant le nombre de termes de pénalité à inclure dans les sous-problèmes et en réduisant le nombre de variables et contraintes dupliquées. Deuxièmement, notre approche permet d'accélérer le taux de convergence de l'algorithme en réduisant la variabilité des solutions intermédiaires obtenues aux noeuds dupliqués. Le troisième article présente une extension de la méthode L-Shaped conçue spécifiquement pour faire la gestion de réservoirs hydroélectriques à haute capacité d'emmagasinnement. Lorsque de tels réservoirs sont considérés, l'horizon à moyen terme couvre typiquement plusieurs dizaines de périodes et les méthodes de décomposition conventionnelles telles que l'APH ne sont applicables que si un faible niveau de branchement est utilisé. Dans ces situations, l'arbre de scénarios considéré correspond généralement à une discrétisation très grossière de la distribution de probabilité continue sous-jacente. La méthode proposée dans cet article permet de considérer un niveau de branchement plus élevé que les méthodes conventionnelles le permettent. Pour atteindre cet objectif, nous posons l'hypothèse selon laquelle le processus stochastique décrivant les paramètres aléatoires subit une perte de mémoire à la fin de la première étape. L'arbre de scénarios résultant de cette hypothèse possède une structure symétrique spéciale à la deuxième étape que nous exploitons en appliquant un schéma de décomposition de Benders à deux étapes. Contrairement à la vaste majorité des méthodes de décomposition par étape proposées dans la littérature, chaque étape de décomposition de notre méthode correspond à plusieurs périodes consécutives. La méthode proposée fonctionne en construisant une fonction de recours convexe et linéaire par morceaux servant à représenter le coût espéré de deuxième étape en fonction de l'état du système à la fin le la première étape dans le problème maître. Le sous-problème et le problème maître sont des programme stochastique définis sur un sous-arbre et peuvent être résolus directement ou par une méthodes de décomposition conventionnelles. Nous démontrons l'efficacité de notre méthode en l'appliquant sur une version réduite du parc de production québécois sur un horizon de 104 semaines. ---------- ABSTRACT : In this thesis, we consider the midterm production planning problem (MTPP) of hydroelectricity generation under uncertainty. The aim of this problem is to manage a set of interconnected hydroelectric reservoirs over several months. We are particularly interested in high dimensional reservoir systems that are operated by large hydroelectricity producers such as Hydro-Québec. These producers operate a complex production system and must satisfy tight operational constraints in an highly uncertain decision environment. In general, midterm optimization models consider a weekly or monthly time step and rely on a simplified representation of the power system. The main source of complexity of the MTPP is usually related to the representation of uncertainty. Random parameters of the MTPP are usually characterized by a complex probability distribution function which is difficult to represent in numerical optimization models. Over the past decades, several stochastic optimization methods were proposed in the literature for managing hydroelectric reservoirs over the midterm planning horizon. Most of these methods are only applicable on low- or medium-size systems due to the curse of dimensionality. stochastic optimization methods that are based on a scenario tree representation of uncertainty are among the rare approaches that can be used on large hydroelectric reservoir systems. These methods work by replacing the original continuous distribution by a discrete distribution possessing a finite number of possible realizations. The stochastic program to be solved can be reformulated into a deterministic equivalent program whose size is proportional to the system size. The main limitation with this approach is due to the exponential growth of the DEP's size with the branching level of the tree. In practice, the DEP is usually quite large and must be solved using a decomposition method which exploits its special mathematical structure. The aim of this thesis is to develop and evaluate different decomposition methods for solving the MTPP under uncertainty. This thesis is divided in three articles. The first article demonstrates the applicability of the progressive hedging algorithm (PHA), a scenario decomposition method, for managing hydroelectric reservoirs with multiannual storage capacity under highly variable operating conditions in Canada. The PHA is a classical stochastic optimization method designed to solve general multistage stochastic programs defined on a scenario tree. This method works by applying an augmented Lagrangian relaxation on non-anticipativity constraints (NACs) of the stochastic program. At each iteration of the PHA, a sequence of subproblems must be solved. Each subproblem corresponds to a deterministic version of the original stochastic program for a particular scenario in the scenario tree. Linear and a quadratic terms must be included in subproblem's objective functions to penalize any violation of NACs. An important limitation of the PHA is due to the fact that the number of subproblems to be solved and the number of penalty terms increase exponentially with the branching level in the tree. This phenomenon can make the application of the PHA particularly difficult when the scenario tree covers several tens of time periods. Another important limitation of the PHA is caused by the fact that the difficulty level of NACs generally increases as the variability of scenarios increases. Consequently, applying the PHA becomes particularly challenging in hydroclimatic regions that are characterized by a high level of seasonal and interannual variability. These two types of limitations can slow down the algorithm's convergence rate and increase the running time per iteration. Overall, very few researchers applied the PHA on reservoir management problems. The few studies that consider this type of application consider a short-range horizon with a small scenario tree. In this study, we apply the PHA on Hydro-Qu\'ebec's power system over a 92-week planning horizon. Hydrologic uncertainty is represented by a scenario tree containing 6 branching stages and 1,635 nodes. The PHA is especially well-suited for this particular application given that the company already possess a deterministic optimization model to solve the MTPP. In fact, only a few minor modifications are required to transform the current model into a new PHA-based stochastic optimization. The second article presents a new approach which enhances the performance of the PHA for solving general Mstochastic programs. The proposed method works by applying a multiscenario decomposition scheme on the stochastic program. Our heuristic method aims at constructing an optimal partition of the scenario set by minimizing the number of NACs on which an augmented Lagrangean relaxation must be applied. Each subproblem is a stochastic program defined on a group of scenarios. NACs linking scenarios sharing a common group are represented implicitly in subproblems by using a group-node system index instead of the traditional scenario-time index system. Only the NACs that link the different scenario groups are represented explicitly and relaxed. The proposed method is evaluated numerically on an hydroelectric reservoir management problem in Qu\'ebec. The results of this experiment show that our method has several advantages. Firstly, it allows to reduce the running time per iteration of the PHA by reducing the number of penalty terms that are included in the objective function and by reducing the amount of duplicated constraints and variables. In turn, this allows to reduce the running time per iteration of the algorithm. Secondly, it allows to increase the algorithm's convergence rate by reducing the variability of intermediary solutions at duplicated tree nodes. Thirdly, our approach reduces the amount of random-access memory (RAM) required for storing Lagrange multipliers associated with relaxed NACs. The third article presents an extension of the L-Shaped method designed specifically for managing hydroelectric reservoir systems with a high storage capacity. When such systems are considered, the midterm planning horizon usually contains several tens of time periods and conventional decomposition methods such as the PHA can only be used if a low branching level is used. In these situations, the scenario tree typically corresponds to a very coarse representation of the underlying continuous probability distribution. The method proposed in this paper enables to consider a higher branching level than conventional decomposition method enables. To achieve this, we assume that the stochastic process driving random parameters has a memory loss at time period. Because of this assumption, the scenario tree possess a special symmetrical structure at the second stage. We exploit this feature using a two-stage Benders decomposition method. Contrary to most stage-wise decomposition methods that were proposed in previous studies, each decomposition stage covers several consecutive time periods. The proposed method works by constructing a convex and piecewise linear recourse function that represents the expected cost at the second stage in the master problem. The subproblem and the master problem are stochastic program defined on scenario subtrees and can be solved using a conventional decomposition method or directly. We test the proposed method on an hydroelectric power system in Québec over a 104-week planning horizon

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    A Survey of Contextual Optimization Methods for Decision Making under Uncertainty

    Full text link
    Recently there has been a surge of interest in operations research (OR) and the machine learning (ML) community in combining prediction algorithms and optimization techniques to solve decision-making problems in the face of uncertainty. This gave rise to the field of contextual optimization, under which data-driven procedures are developed to prescribe actions to the decision-maker that make the best use of the most recently updated information. A large variety of models and methods have been presented in both OR and ML literature under a variety of names, including data-driven optimization, prescriptive optimization, predictive stochastic programming, policy optimization, (smart) predict/estimate-then-optimize, decision-focused learning, (task-based) end-to-end learning/forecasting/optimization, etc. Focusing on single and two-stage stochastic programming problems, this review article identifies three main frameworks for learning policies from data and discusses their strengths and limitations. We present the existing models and methods under a uniform notation and terminology and classify them according to the three main frameworks identified. Our objective with this survey is to both strengthen the general understanding of this active field of research and stimulate further theoretical and algorithmic advancements in integrating ML and stochastic programming

    Stochastic programming for home energy management system optimization

    Get PDF
    The European Union set the 2020 goals to reduce GHG emissions, increase energy efficiency and d ecarboniz e the energy supply . Home Energy Management Systems (HEMS) are a source of flexibility and a cost - effective strategy to pursue the integration of Renewable Energy Sources (RES) However, the behavior of the component s involved in the residential energy consumption is highly uncertain which poses a challenge for HEM S . A strategy to tackle such uncertain parameters is s tochastic optimization . Even though its formulation dates back decades, only the recent rise of adequ ate technology and software have made possible its implementation. This work proposes to use stochastic optimization in HEMS. The requirements for Stochastic Programming (SP) consist of a mathematical model, a scenario tree and different data instances. The mathematical model is based o n the INVADE project and was implemented using Pyomo. The stochastic formulation of the problem was done with PySP, the Pyomo extension for SP. The scenario tree was created using NetworkX and the data instances were formul ated with Dplyr . A household with an inflexible load, PV generation, a battery and a connection to the grid was considered. Three case studies were analyzed, to gain insight on the impact of different stochastic parameters. Furthermore, a sensitivity analy sis regarding the nature of the stochastic input data was performed. Afterwards , a detailed description and analysis regarding the use of the software was done . Finally , the environmental impact of the project was assessed. In conclusion the stochastic and deterministic formulations are equivalent for the present work due to the high flexibility of the grid. The Value of Stochastic Solution (VSS) was of around - 0.04 € . However, this value increases with increasing standard deviation ( σ) of the input data. T he algorithm schedules the HEMS components in response to the market price signals. The main source of flexibility is the grid, followed by the battery. Generation curtailment is also attractive and is scheduled in all simulations. Lastly, feed in to the g rid is the least attractive flexibility mechanism. The expected flexibility was of 0.381 € per day. R and Python proved to be simple and powerful. Furthermore, Pyomo is ideal to translate models into python objects. PySP has its advantages and drawback, al though some of the last ones were circumvent by using NetworkX and Pandas. This algorithm has an estimated mitigation potential of 1gCO 2eq /per day for the case studies analyzed. On the other hand, the environmental impact created during the realization of this project was of 115 kgCO 2eq

    Hybrid Offline/Online Methods for Optimization Under Uncertainty

    Get PDF
    This work considers multi-stage optimization problems under uncertainty. In this context, at each stage some uncertainty is revealed and some decision must be made: the need to account for multiple future developments makes stochastic optimization incredibly challenging. Due to such a complexity, the most popular approaches depend on the temporal granularity of the decisions to be made. These approaches are, in general, sampling-based methods and heuristics. Long-term strategic decisions (which are often very impactful) are typically solved via expensive, but more accurate, sampling-based approaches. Short-term operational decisions often need to be made over multiple steps, within a short time frame: they are commonly addressed via polynomial-time heuristics, while more advanced sampling-based methods are applicable only if their computational cost is carefully managed. We will refer to the first class of problems (and solution approaches) as offline and to the second as online. These phases are typically solved in isolation, despite being strongly interconnected. Starting from the idea of providing multiple options to balance the solution quality/time trade-off in optimization problem featuring offline and online phases, we propose different methods that have broad applicability. These methods have been firstly motivated by applications in real-word energy problems that involve distinct offline and online phases: for example, in Distributed Energy Management Systems we may need to define (offline) a daily production schedule for an industrial plant, and then manage (online) its power supply on a hour by hour basis. Then we show that our methods can be applied to a variety of practical application scenarios in very different domains with both discrete and numeric decision variables

    Scenario generation and reduction for long-term and short-term power system generation planning under uncertainties

    Get PDF
    This dissertation focuses on computational issues of applying two-stage stochastic programming for long-term and short-term generation planning problems from the perspective of scenario generation and reduction. It follows a three-paper format, in which each paper discusses approaches to generating probabilistic scenarios and then reducing the substantial computational burden caused by a huge number of scenarios for different applications in power systems. The first paper investigates a long-term generation expansion planning model with uncertain annual load and natural gas price. A two-stage stochastic program is formulated to minimize the total expected expansion cost, generation cost and penalties on unserved energy while satisfying aggregated operational constraints. A statistical property matching technique is applied to simulate plausible future realizations of annual load and natural gas price over the whole planning horizon. To mitigate the computational complexity of a widely used classic scenario reduction method in this context, we firstly cluster scenarios according to the wait-and-see solution for each scenario and then apply the fast forward selection (FFS) method. The second paper prepares a basis for load scenario generation for the day-ahead reliability unit commitment problem. For the purpose of creating practical load scenarios, epi-splines, based on approximation theory, are employed to approximate the relationship between load and weather forecasts. The epi-spline based short-term load model starts by classifying similar days according to daily forecast temperature as well as monthly and daily load patterns. Parameters of the epi-spline based short-term load model are then estimated by minimizing the fitted errors. The method is tested using day-ahead weather forecast and hourly load data obtained from an Independent System Operator in the U.S. By considering the non-weather dependent load pattern in the short-term load model, the model not only provides accurate load predictions and smaller prediction variances in the validated days, but also preserves similar intraday serial correlations among hourly forecast loads to those from actual load. The last paper in this dissertation proposes a solution-sensitivity based heuristic scenario reduction method, called forward selection in recourse clusters (FSRC), for a two-stage stochastic day-ahead reliability unit commitment model. FSRC alleviates the computational burden of solving the stochastic program by selecting scenarios based on their cost and reliability impacts. In addition, the variant of pre-categorizing scenarios improves the computational efficiency of FSRC by simplifying the clustering procedure. In a case study down-sampled from an Independent System Operator in the U.S., FSRC is shown to provide reliable commitment strategies and preserve solution quality even when the reduction is substantial

    Design de réseaux de distribution à deux échelons sous incertitude

    Get PDF
    With the high growth of e-commerce and the continuous increase in cities population contrasted with the rising levels of congestion, distribution schemes need to deploy additional echelons to offer more dynamic adjustment to the requirement of the business over time and to cope with all the random factors. In this context, a two-echelon distribution network is nowadays investigated by the practitioners.In this thesis, we first present a global survey on distribution network design problems and point out many critical modeling features, namely the two-echelon structure, the multi-period setting, the uncertainty and solution approaches. The aim, here, is to propose a comprehensive framework for the design of an efficient two-echelon distribution network under multi-period and stochastic settings in which products are directed from warehouse platforms (WPs) to distribution platforms (DPs) before being transported to customers. A temporal hierarchy characterizes the design level dealing with facility-location and capacity decisions over a set of design periods, while the operational level involves transportation decisions on a daily basis.Then, we introduce the comprehensive framework for the two-echelon distribution network design problem under uncertain demand, and time-varying demand and cost, formulated as a multi-stage stochastic program. This work looks at a generic case for the deployment of a retailer's distribution network. Thus, the problem involves, at the strategic level, decisions on the number and location of DPs along the set of design periods as well as decisions on the capacity assignment to calibrate DP throughput capacity. The operational decisions related to transportation are modeled as origin-destination arcs. Subsequently, we propose alternative modeling approaches based on two-stage stochastic programming with recourse, and solve the resulting models using a Benders decomposition approach integrated with a sample average approximation (SAA) technique.Next, we are interested in the last-mile delivery in an urban context where transportation decisions involved in the second echelon are addressed through multi-drop routes. A two-echelon stochastic multi-period capacitated location-routing problem (2E-SM-CLRP) is defined in which facility-location decisions concern both WPs and DPs. We model the problem using a two-stage stochastic program with integer recourse. To solve the 2E-SM-CLRP, we develop a Benders decomposition algorithm. The location and capacity decisions are fixed from the solution of the Benders master problem. The resulting subproblem is a capacitated vehicle-routing problem with capacitated multi-depot (CVRP-CMD) and is solved using a branch-cut-and-price algorithm.Finally, we focus on the multi-stage framework proposed for the stochastic multi-period two-echelon distribution network design problem and evaluate its tractability. A scenario tree is built to handle the set of scenarios representing demand uncertainty. We present a compact formulation and develop a rolling horizon heuristic to produce design solutions for the multi-stage model. It provides good quality bounds in a reasonable computational times.Avec la forte croissance du e-commerce et l'augmentation continue de la population des villes impliquant des niveaux de congestion plus élevés, les réseaux de distribution doivent déployer des échelons supplémentaires pour offrir un ajustement dynamique aux besoins des entreprises au cours du temps et faire face aux aléas affectant l’activité de distribution. Dans ce contexte, les praticiens s'intéressent aux réseaux de distribution à deux échelons.Dans cette thèse, nous commençons par présenter une revue complète des problèmes de design des réseaux de distribution et souligner des caractéristiques essentielles de modélisation. Ces aspects impliquent la structure à deux échelons, l’aspect multi-période, l’incertitude et les méthodes de résolution. Notre objectif est donc, d’élaborer un cadre complet pour le design d’un réseau de distribution efficace à deux échelons, sous incertitude et multi-périodicité, dans lequel les produits sont acheminés depuis les plateformes de stockage (WP) vers les plateformes de distribution (DP) avant d'être transportés vers les clients. Ce cadre est caractérisé par une hiérarchie temporelle entre le niveau de design impliquant des décisions relatives à la localisation des plateformes et à la capacité allouée aux DPs sur une échelle de temps annuelle, et le niveau opérationnel concernant des décisions journalières de transport. Dans une première étude, nous introduisons le cadre complet pour le problème de design de réseaux de distribution à deux échelons avec une demande incertaine, une demande et un coût variables dans le temps. Le problème est formulé comme un programme stochastique à plusieurs étapes. Il implique au niveau stratégique des décisions de localisation des DPs ainsi que des décisions d'affectation des capacités aux DPs sur plusieurs périodes de design, et au niveau opérationnel des décisions de transport sous forme d'arcs origine-destination. Ensuite, nous proposons deux modèles alternatifs basés sur la programmation stochastique à deux étapes avec recours, et les résolvons par une approche de décomposition de Benders intégrée à une technique d’approximation moyenne d’échantillon (SAA).Par la suite, nous nous intéressons à la livraison du dernier kilomètre dans un contexte urbain où les décisions de transport dans le deuxième échelon sont caractérisées par des tournées de véhicules. Un problème multi-période stochastique de localisation-routage à deux échelons avec capacité (2E-SM-CLRP) est défini, dans lequel les décisions de localisation concernent les WPs et les DPs. Le modèle est un programme stochastique à deux étapes avec recours en nombre entier. Nous développons un algorithme de décomposition de Benders. Les décisions de localisation et de capacité sont déterminées par la solution du problème maître de Benders. Le sous-problème résultant est un problème multi-dépôt de tournées de véhicule avec des dépôts et véhicules capacitaires qui est résolu par un algorithme de branch-cut-and-price.Enfin, nous étudions le cadre à plusieurs étapes proposé pour le problème stochastique multi-période de design de réseaux de distribution à deux échelons et évaluons sa tractabilité. Pour ceci, nous développons une heuristique à horizon glissant qui permet d’obtenir des bornes de bonne qualité et des solutions de design pour le modèle à plusieurs étapes
    corecore