19,665 research outputs found

    Quantified Constraint Handling Rules

    Get PDF
    We shift the QCSP (Quantified Constraint Satisfaction Problems) framework to the QCHR (Quantified Constraint Handling Rules) framework by enabling dynamic binder and access to user-defined constraints. QCSP offers a natural framework to express PSPACE problems as finite two-players games. But to define a QCSP model, the binder must be formerly known and cannot be built dynamically even if the worst case won\u27t occur. To overcome this issue, we define the new QCHR formalism that allows to build the binder dynamically during the solving. Our QCHR models exhibit state-of-the-art performances on static binder and outperforms previous QCSP approaches when the binder is dynamic

    Quantified weighted constraint satisfaction problems.

    Get PDF
    Mak, Wai Keung Terrence.Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (p. 100-104).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Constraint Satisfaction Problems --- p.1Chapter 1.2 --- Weighted Constraint Satisfaction Problems --- p.2Chapter 1.3 --- Quantified Constraint Satisfaction Problems --- p.3Chapter 1.4 --- Motivation and Goal --- p.4Chapter 1.5 --- Outline of the Thesis --- p.6Chapter 2 --- Background --- p.7Chapter 2.1 --- Constraint Satisfaction Problems --- p.7Chapter 2.1.1 --- Backtracking Tree Search --- p.9Chapter 2.1.2 --- Local Consistencies for solving CSPs --- p.11Node Consistency (NC) --- p.13Arc Consistency (AC) --- p.14Searching by Maintaining Arc Consistency --- p.16Chapter 2.1.3 --- Constraint Optimization Problems --- p.17Chapter 2.2 --- Weighted Constraint Satisfaction Problems --- p.19Chapter 2.2.1 --- Branch and Bound Search (B&B) --- p.23Chapter 2.2.2 --- Local Consistencies for WCSPs --- p.25Node Consistency --- p.26Arc Consistency --- p.28Chapter 2.3 --- Quantified Constraint Satisfaction Problems --- p.32Chapter 2.3.1 --- Backtracking Free search --- p.37Chapter 2.3.2 --- Consistencies for QCSPs --- p.38Chapter 2.3.3 --- Look Ahead for QCSPs --- p.45Chapter 3 --- Quantified Weighted CSPs --- p.48Chapter 4 --- Branch & Bound with Consistency Techniques --- p.54Chapter 4.1 --- Alpha-Beta Pruning --- p.54Chapter 4.2 --- Consistency Techniques --- p.57Chapter 4.2.1 --- Node Consistency --- p.62Overview --- p.62Lower Bound of A-Cost --- p.62Upper Bound of A-Cost --- p.66Projecting Unary Costs to Cθ --- p.67Chapter 4.2.2 --- Enforcing Algorithm for NC --- p.68Projection Phase --- p.69Pruning Phase --- p.69Time Complexity --- p.71Chapter 4.2.3 --- Arc Consistency --- p.73Overview --- p.73Lower Bound of A-Cost --- p.73Upper Bound of A-Cost --- p.75Projecting Binary Costs to Unary Constraint --- p.75Chapter 4.2.4 --- Enforcing Algorithm for AC --- p.76Projection Phase --- p.77Pruning Phase --- p.77Time complexity --- p.79Chapter 5 --- Performance Evaluation --- p.83Chapter 5.1 --- Definitions of QCOP/QCOP+ --- p.83Chapter 5.2 --- Transforming QWCSPs into QCOPs --- p.90Chapter 5.3 --- Empirical Evaluation --- p.91Chapter 5.3.1 --- Random Generated Problems --- p.92Chapter 5.3.2 --- Graph Coloring Game --- p.92Chapter 5.3.3 --- Min-Max Resource Allocation Problem --- p.93Chapter 5.3.4 --- Value Ordering Heuristics --- p.94Chapter 6 --- Concluding Remarks --- p.96Chapter 6.1 --- Contributions --- p.96Chapter 6.2 --- Limitations and Related Works --- p.97Chapter 6.3 --- Future Works --- p.99Bibliography --- p.10

    Certainty Closure: Reliable Constraint Reasoning with Incomplete or Erroneous Data

    Full text link
    Constraint Programming (CP) has proved an effective paradigm to model and solve difficult combinatorial satisfaction and optimisation problems from disparate domains. Many such problems arising from the commercial world are permeated by data uncertainty. Existing CP approaches that accommodate uncertainty are less suited to uncertainty arising due to incomplete and erroneous data, because they do not build reliable models and solutions guaranteed to address the user's genuine problem as she perceives it. Other fields such as reliable computation offer combinations of models and associated methods to handle these types of uncertain data, but lack an expressive framework characterising the resolution methodology independently of the model. We present a unifying framework that extends the CP formalism in both model and solutions, to tackle ill-defined combinatorial problems with incomplete or erroneous data. The certainty closure framework brings together modelling and solving methodologies from different fields into the CP paradigm to provide reliable and efficient approches for uncertain constraint problems. We demonstrate the applicability of the framework on a case study in network diagnosis. We define resolution forms that give generic templates, and their associated operational semantics, to derive practical solution methods for reliable solutions.Comment: Revised versio

    Efficient Solving of Quantified Inequality Constraints over the Real Numbers

    Full text link
    Let a quantified inequality constraint over the reals be a formula in the first-order predicate language over the structure of the real numbers, where the allowed predicate symbols are \leq and <<. Solving such constraints is an undecidable problem when allowing function symbols such sin\sin or cos\cos. In the paper we give an algorithm that terminates with a solution for all, except for very special, pathological inputs. We ensure the practical efficiency of this algorithm by employing constraint programming techniques

    Set-based design of mechanical systems with design robustness integrated

    Get PDF
    This paper presents a method for parameter design of mechanical products based on a set-based approach. Set-based concurrent engineering emphasises on designing in a multi-stakeholder environment with concurrent involvement of the stakeholders in the design process. It also encourages flexibility in design through communication in terms of ranges instead of fixed point values and subsequent alternative solutions resulting from intersection of these ranges. These alternative solutions can then be refined and selected according to the designers’ preferences and clients’ needs. This paper presents a model and tools for integrated flexible design that take into account the manufacturing variations as well as the design objectives for finding inherently robust solutions using QCSP transformation through interval analysis. In order to demonstrate the approach, an example of design of rigid flange coupling with a variable number of bolts and a choice of bolts from ISO M standard has been resolved and demonstrated

    Branch-and-Prune Search Strategies for Numerical Constraint Solving

    Get PDF
    When solving numerical constraints such as nonlinear equations and inequalities, solvers often exploit pruning techniques, which remove redundant value combinations from the domains of variables, at pruning steps. To find the complete solution set, most of these solvers alternate the pruning steps with branching steps, which split each problem into subproblems. This forms the so-called branch-and-prune framework, well known among the approaches for solving numerical constraints. The basic branch-and-prune search strategy that uses domain bisections in place of the branching steps is called the bisection search. In general, the bisection search works well in case (i) the solutions are isolated, but it can be improved further in case (ii) there are continuums of solutions (this often occurs when inequalities are involved). In this paper, we propose a new branch-and-prune search strategy along with several variants, which not only allow yielding better branching decisions in the latter case, but also work as well as the bisection search does in the former case. These new search algorithms enable us to employ various pruning techniques in the construction of inner and outer approximations of the solution set. Our experiments show that these algorithms speed up the solving process often by one order of magnitude or more when solving problems with continuums of solutions, while keeping the same performance as the bisection search when the solutions are isolated.Comment: 43 pages, 11 figure

    Generalizing Consistency and other Constraint Properties to Quantified Constraints

    Full text link
    Quantified constraints and Quantified Boolean Formulae are typically much more difficult to reason with than classical constraints, because quantifier alternation makes the usual notion of solution inappropriate. As a consequence, basic properties of Constraint Satisfaction Problems (CSP), such as consistency or substitutability, are not completely understood in the quantified case. These properties are important because they are the basis of most of the reasoning methods used to solve classical (existentially quantified) constraints, and one would like to benefit from similar reasoning methods in the resolution of quantified constraints. In this paper, we show that most of the properties that are used by solvers for CSP can be generalized to quantified CSP. This requires a re-thinking of a number of basic concepts; in particular, we propose a notion of outcome that generalizes the classical notion of solution and on which all definitions are based. We propose a systematic study of the relations which hold between these properties, as well as complexity results regarding the decision of these properties. Finally, and since these problems are typically intractable, we generalize the approach used in CSP and propose weaker, easier to check notions based on locality, which allow to detect these properties incompletely but in polynomial time

    Compilation for QCSP

    Get PDF
    We propose in this article a framework for compilation of quantified constraint satisfaction problems (QCSP). We establish the semantics of this formalism by an interpretation to a QCSP. We specify an algorithm to compile a QCSP embedded into a search algorithm and based on the inductive semantics of QCSP. We introduce an optimality property and demonstrate the optimality of the interpretation of the compiled QCSP.Comment: Proceedings of the 13th International Colloquium on Implementation of Constraint LOgic Programming Systems (CICLOPS 2013), Istanbul, Turkey, August 25, 201
    corecore