10 research outputs found

    Parallel versus iterated: comparing population oriented and chained sequential simulated annealing approaches to cost-based abduction

    Get PDF
    Stochastic search techniques are used to solve NP-hard combinatorial optimization problems. Simulated annealing, genetic algorithms and hybridization of both, all attempt to find the best solution with minimal cost and time. Guided Evolutionary Simulated Annealing is one technique of such hybridization. It is based on evolutionary programming where a number of simulated annealing chains are working in a generation to find the optimum solution for a problem. Abduction is the problem of finding the best explanation to a given set of observations. In AI, this has been modeled by a set of hypotheses that need to be assumed to prove the observation or goal. Cost-Based Abduction (CBA) associates a cost to each hypothesis. It is an example of an NP-hard problem, where the objective is to minimize the cost of the assumed hypotheses to prove the goal. Analyzing the search space of a problem is one way of understanding its nature and categorizing it into straightforward, misleading or difficult for genetic algorithms. Fitness-Distance Correlation and Fitness-Distance plots are helpful tools in such analysis. This thesis examines solving the CBA problem using Simulated Annealing and Guided Evolutionary Simulated Annealing and analyses the Fitness-Distance landscape of some Cost-Based abduction problem instances

    An adaptive hybrid genetic-annealing approach for solving the map problem on belief networks

    Get PDF
    Genetic algorithms (GAs) and simulated annealing (SA) are two important search methods that have been used successfully in solving difficult problems such as combinatorial optimization problems. Genetic algorithms are capable of wide exploration of the search space, while simulated annealing is capable of fine tuning a good solution. Combining both techniques may result in achieving the benefits of both and improving the quality of the solutions obtained. Several attempts have been made to hybridize GAs and SA. One such attempt was to augment a standard GA with simulated annealing as a genetic operator. SA in that case acted as a directed or intelligent mutation operator as opposed to the random, undirected mutation operator of GAs. Although using this technique showed some advantages over GA used alone, one problem was to find fixed global annealing parameters that work for all solutions and all stages in the search process. Failing to find optimum annealing parameters affects the quality of the solution obtained and may degrade performance. In this research, we try to overcome this weakness by introducing an adaptive hybrid GA - SA algorithm, in which simulated annealing acts as a special case of mutation. However, the annealing operator used in this technique is adaptive in the sense that the annealing parameters are evolved and optimized according to the requirements of the search process. Adaptation is expected to help guide the search towards optimum solutions with minimum effort of parameter optimization. The algorithm is tested in solving an important NP-hard problem, which is the MAP (Maximum a-Posteriori) assignment problem on BBNs (Bayesian Belief Networks). The algorithm is also augmented with some problem specific information used to design a new GA crossover operator. The results obtained from testing the algorithm on several BBN graphs with large numbers of nodes and different network structures indicate that the adaptive hybrid algorithm provides an improvement of solution quality over that obtained by GA used alone and GA augmented with standard non-adaptive simulated annealing. Its effect, however, is more profound for problems with large numbers of nodes, which are difficult for GA alone to solve

    Evolutionary algorithms for synthesis and optimisation of sequential logic circuits

    Get PDF
    Considerable progress has been made recently 1n the understanding of combinational logic optimization. Consequently a large number of university and industrial Electric Computing Aided Design (ECAD) programs are now available for optimal logic synthesis of combinational circuits. The progress with sequential logic synthesis and optimization, on the other hand, is considerably less mature. In recent years, evolutionary algorithms have been found to be remarkably effective way of using computers for solving difficult problems. This thesis is, in large part, a concentrated effort to apply this philosophy to the synthesis and optimization of sequential circuits. A state assignment based on the use of a Genetic Algorithm (GA) for the optimal synthesis of sequential circuits is presented. The state assignment determines the structure of the sequential circuit realizing the state machine and therefore its area and performances. The synthesis based on the GA approach produced designs with the smallest area to date. Test results on standard fmite state machine (FS:M) benchmarks show that the GA could generate state assignments, which required on average 15.44% fewer gates and 13.47% fewer literals compared with alternative techniques. Hardware evolution is performed through a succeSSlOn of changes/reconfigurations of elementary components, inter-connectivity and selection of the fittest configurations until the target functionality is reached. The thesis presents new approaches, which combine both genetic algorithm for state assignment and extrinsic Evolvable Hardware (EHW) to design sequential logic circuits. The implemented evolutionary algorithms are able to design logic circuits with size and complexity, which have not been demonstrated in published work. There are still plenty of opportunities to develop this new line of research for the synthesis, optimization and test of novel digital, analogue and mixed circuits. This should lead to a new generation of Electronic Design Automation tools.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Evolutionary algorithms for synthesis and optimisation of sequential logic circuits.

    Get PDF
    Considerable progress has been made recently 1n the understanding ofcombinational logic optimization. Consequently a large number of universityand industrial Electric Computing Aided Design (ECAD) programs are nowavailable for optimal logic synthesis of combinational circuits. The progresswith sequential logic synthesis and optimization, on the other hand, isconsiderably less mature.In recent years, evolutionary algorithms have been found to be remarkablyeffective way of using computers for solving difficult problems. This thesis is,in large part, a concentrated effort to apply this philosophy to the synthesisand optimization of sequential circuits.A state assignment based on the use of a Genetic Algorithm (GA) for theoptimal synthesis of sequential circuits is presented. The state assignmentdetermines the structure of the sequential circuit realizing the state machineand therefore its area and performances. The synthesis based on the GAapproach produced designs with the smallest area to date. Test results onstandard fmite state machine (FS:M) benchmarks show that the GA couldgenerate state assignments, which required on average 15.44% fewer gatesand 13.47% fewer literals compared with alternative techniques.Hardware evolution is performed through a succeSSlOn ofchanges/reconfigurations of elementary components, inter-connectivity andselection of the fittest configurations until the target functionality is reached.The thesis presents new approaches, which combine both genetic algorithmfor state assignment and extrinsic Evolvable Hardware (EHW) to designsequential logic circuits. The implemented evolutionary algorithms are able todesign logic circuits with size and complexity, which have not beendemonstrated in published work.There are still plenty of opportunities to develop this new line of research forthe synthesis, optimization and test of novel digital, analogue and mixedcircuits. This should lead to a new generation of Electronic DesignAutomation tools

    Design and Optimization Methods for Pin-Limited and Cyberphysical Digital Microfluidic Biochips

    Get PDF
    <p>Microfluidic biochips have now come of age, with applications to biomolecular recognition for high-throughput DNA sequencing, immunoassays, and point-of-care clinical diagnostics. In particular, digital microfluidic biochips, which use electrowetting-on-dielectric to manipulate discrete droplets (or "packets of biochemical payload") of picoliter volumes under clock control, are especially promising. The potential applications of biochips include real-time analysis for biochemical reagents, clinical diagnostics, flash chemistry, and on-chip DNA sequencing. The ease of reconfigurability and software-based control in digital microfluidics has motivated research on various aspects of automated chip design and optimization.</p><p>This thesis research is focused on facilitating advances in on-chip bioassays, enhancing the automated use of digital microfluidic biochips, and developing an "intelligent" microfluidic system that has the capability of making on-line re-synthesis while a bioassay is being executed. This thesis includes the concept of a "cyberphysical microfluidic biochip" based on the digital microfluidics hardware platform and on-chip sensing technique. In such a biochip, the control software, on-chip sensing, and the microfluidic operations are tightly coupled. The status of the droplets is dynamically monitored by on-chip sensors. If an error is detected, the control software performs dynamic re-synthesis procedure and error recovery.</p><p>In order to minimize the size and cost of the system, a hardware-assisted error-recovery method, which relies on an error dictionary for rapid error recovery, is also presented. The error-recovery procedure is controlled by a finite-state-machine implemented on a field-programmable gate array (FPGA) instead of a software running on a separate computer. Each state of the FSM represents a possible error that may occur on the biochip; for each of these errors, the corresponding sequence of error-recovery signals is stored inside the memory of the FPGA before the bioassay is conducted. When an error occurs, the FSM transitions from one state to another, and the corresponding control signals are updated. Therefore, by using inexpensive FPGA, a portable cyberphysical system can be implemented.</p><p>In addition to errors in fluid-handling operations, bioassay outcomes can also be erroneous due the uncertainty in the completion time for fluidic operations. Due to the inherent randomness of biochemical reactions, the time required to complete each step of the bioassay is a random variable. To address this issue, a new "operation-interdependence-aware" synthesis algorithm is proposed in this thesis. The start and stop time of each operation are dynamically determined based on feedback from the on-chip sensors. Unlike previous synthesis algorithms that execute bioassays based on pre-determined start and end times of each operation, the proposed method facilitates "self-adaptive" bioassays on cyberphysical microfluidic biochips.</p><p>Another design problem addressed in this thesis is the development of a layout-design algorithm that can minimize the interference between devices on a biochip. A probabilistic model for the polymerase chain reaction (PCR) has been developed; based on the model, the control software can make on-line decisions regarding the number of thermal cycles that must be performed during PCR. Therefore, PCR can be controlled more precisely using cyberphysical integration.</p><p>To reduce the fabrication cost of biochips, yet maintain application flexibility, the concept of a "general-purpose pin-limited biochip" is proposed. Using a graph model for pin-assignment, we develop the theoretical basis and a heuristic algorithm to generate optimized pin-assignment configurations. The associated scheduling algorithm for on-chip biochemistry synthesis has also been developed. Based on the theoretical framework, a complete design flow for pin-limited cyberphysical microfluidic biochips is presented.</p><p>In summary, this thesis research has led to an algorithmic infrastructure and optimization tools for cyberphysical system design and technology demonstrations. The results of this thesis research are expected to enable the hardware/software co-design of a new class of digital microfluidic biochips with tight coupling between microfluidics, sensors, and control software.</p>Dissertatio

    Geometric optimization on visibility problems: metaheuristic and exact solutions

    Get PDF
    Doutoramento em MatemáticaOs problemas de visibilidade têm diversas aplicações a situações reais. Entre os mais conhecidos, e exaustivamente estudados, estão os que envolvem os conceitos de vigilância e ocultação em estruturas geométricas (problemas de vigilância e ocultação). Neste trabalho são estudados problemas de visibilidade em estruturas geométricas conhecidas como polígonos, uma vez que estes podem representar, de forma apropriada, muitos dos objectos reais e são de fácil manipulação computacional. O objectivo dos problemas de vigilância é a determinação do número mínimo de posições para a colocação de dispositivos num dado polígono, de modo a que estes dispositivos consigam “ver” a totalidade do polígono. Por outro lado, o objectivo dos problemas de ocultação é a determinação do número máximo de posições num dado polígono, de modo a que quaisquer duas posições não se consigam “ver”. Infelizmente, a maior parte dos problemas de visibilidade em polígonos são NP-difíceis, o que dá origem a duas linhas de investigação: o desenvolvimento de algoritmos que estabelecem soluções aproximadas e a determinação de soluções exactas para classes especiais de polígonos. Atendendo a estas duas linhas de investigação, o trabalho é dividido em duas partes. Na primeira parte são propostos algoritmos aproximados, baseados essencialmente em metaheurísticas e metaheurísticas híbridas, para resolver alguns problemas de visibilidade, tanto em polígonos arbitrários como ortogonais. Os problemas estudados são os seguintes: “Maximum Hidden Vertex Set problem”, “Minimum Vertex Guard Set problem”, “Minimum Vertex Floodlight Set problem” e “Minimum Vertex k-Modem Set problem”. São também desenvolvidos métodos que permitem determinar a razão de aproximação dos algoritmos propostos. Para cada problema são implementados os algoritmos apresentados e é realizado um estudo estatístico para estabelecer qual o algoritmo que obtém as melhores soluções num tempo razoável. Este estudo permite concluir que as metaheurísticas híbridas são, em geral, as melhores estratégias para resolver os problemas de visibilidade estudados. Na segunda parte desta dissertação são abordados os problemas “Minimum Vertex Guard Set”, “Maximum Hidden Set” e “Maximum Hidden Vertex Set”, onde são identificadas e estudadas algumas classes de polígonos para as quais são determinadas soluções exactas e/ou limites combinatórios.Visibility problems have several applications to real-life problems. Among the most distinguished and exhaustively studied visibility problems are the ones involving concepts of guarding and hiding on geometrical structures (guarding and hiding problems). This work deals with visibility problems on geometrical structures known as polygons, since polygons are appropriate representations of many real-world objects and are easily handled by computers. The objective of the guarding problems studied in this thesis is to find a minimum number of device positions on a given polygon such that these devices collectively ''see'' the whole polygon. On the other hand, the goal of the hiding problems is to find a maximum number of positions on a given polygon such that no two of these positions can “see" each other. Unfortunately, most of the visibility problems on polygons are NP-hard, which opens two lines of investigation: the development of algorithms that establish approximate solutions and the determination of exact solutions on special classes of polygons. Accordingly, this work is divided in two parts where these two lines of investigation are considered. The first part of this thesis proposes approximation algorithms, mainly based on metaheuristics and hybrid metaheuristics, to tackle some visibility problems on arbitrary and orthogonal polygons. The addressed problems are the Maximum Hidden Vertex Set problem, the Minimum Vertex Guard Set problem, the Minimum Vertex Floodlight Set problem and the Minimum Vertex k-Modem Set problem. Methods that allow the determination of the performance ratio of the developed algorithms are also proposed. For each problem, the proposed algorithms are implemented and a statistical study is performed to determine which of the developed methods obtains the best solution in a reasonable amount of time. This study allows to conclude that, in general, the hybrid metaheuristics are the best approach to solve the studied visibility problems. The second part of this dissertation addresses the Minimum Vertex Guard Set problem, the Maximum Hidden Set problem and the Maximum Hidden Vertex Set problem, where some classes of polygons are identified and studied and for which are determined exact solutions and/or combinatorial bounds
    corecore