1,159 research outputs found

    Recurrent neural networks and proper orthogonal decomposition with interval data for real-time predictions of mechanised tunnelling processes

    Get PDF
    A surrogate modelling strategy for predictions of interval settlement fields in real time during machine driven construction of tunnels, accounting for uncertain geotechnical parameters in terms of intervals, is presented in the paper. Artificial Neural Network and Proper Orthogonal Decomposition approaches are combined to approximate and predict tunnelling induced time variant surface settlement fields computed by a process-oriented finite element simulation model. The surrogate models are generated, trained and tested in the design (offline) stage of a tunnel project based on finite element analyses to compute the surface settlements for selected scenarios of the tunnelling process steering parameters taking uncertain geotechnical parameters by means of possible ranges (intervals) into account. The resulting mappings of time constant geotechnical interval parameters and time variant deterministic steering parameters onto the time variant interval settlement field are solved offline by optimisation and online by interval analyses approaches using the midpoint-radius representation of interval data. During the tunnel construction, the surrogate model is designed to be used in real-time to predict interval fields of the surface settlements in each stage of the advancement of the tunnel boring machine for selected realisations of the steering parameters to support the steering decisions of the machine driver

    Advances in integrating autonomy with acoustic communications for intelligent networks of marine robots

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2013Autonomous marine vehicles are increasingly used in clusters for an array of oceanographic tasks. The effectiveness of this collaboration is often limited by communications: throughput, latency, and ease of reconfiguration. This thesis argues that improved communication on intelligent marine robotic agents can be gained from acting on knowledge gained by improved awareness of the physical acoustic link and higher network layers by the AUV’s decision making software. This thesis presents a modular acoustic networking framework, realized through a C++ library called goby-acomms, to provide collaborating underwater vehicles with an efficient short-range single-hop network. goby-acomms is comprised of four components that provide: 1) losslessly compressed encoding of short messages; 2) a set of message queues that dynamically prioritize messages based both on overall importance and time sensitivity; 3) Time Division Multiple Access (TDMA) Medium Access Control (MAC) with automatic discovery; and 4) an abstract acoustic modem driver. Building on this networking framework, two approaches that use the vehicle’s “intelligence” to improve communications are presented. The first is a “non-disruptive” approach which is a novel technique for using state observers in conjunction with an entropy source encoder to enable highly compressed telemetry of autonomous underwater vehicle (AUV) position vectors. This system was analyzed on experimental data and implemented on a fielded vehicle. Using an adaptive probability distribution in combination with either of two state observer models, greater than 90% compression, relative to a 32-bit integer baseline, was achieved. The second approach is “disruptive,” as it changes the vehicle’s course to effect an improvement in the communications channel. A hybrid data- and model-based autonomous environmental adaptation framework is presented which allows autonomous underwater vehicles (AUVs) with acoustic sensors to follow a path which optimizes their ability to maintain connectivity with an acoustic contact for optimal sensing or communication.I wish to acknowledge the sponsors of this research for their generous support of my tuition, stipend, and research: the WHOI/MIT Joint Program, the MIT Presidential Fellowship, the Office of Naval Research (ONR) # N00014-08-1-0011, # N00014-08-1-0013, and the ONR PlusNet Program Graduate Fellowship, the Defense Advanced Research Projects Agency (DARPA) (Deep Sea Operations: Applied Physical Sciences (APS) Award # APS 11-15 3352-006, APS 11-15-3352-215 ST 2.6 and 2.7

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Applications of CSP solving in computer games (camera control)

    Get PDF
    While camera control systems of commercial 3D games have improved greatly in recent years, they are not as fully developed as are other game components such as graphics and physics engines. Bourne and Sattar (2006) have proposed a reactive constraint based third person perspective camera control system. We have extended the capability of their system to handle occlusion while following the main character, and have used camera cuts to find appropriate camera positions for a few difficult situations. We have developed a reactive constraint based third person perspective chase camera control system to follow a character in a 3D environment. The camera follows the character from (near) optimal positions defined by a camera profile. The desired values of the height and distance constraints of the camera profile are changed appropriately whenever the character enters a semi-enclosed or an enclosed area, and the desired value of the orientation constraint of the camera profile is changed incrementally whenever theoptimal camera view is obstructed. Camera cuts are used whenever the main character backs up to a wall or any other obstructions, or comes out of a semi-enclosed or an enclosed area. Two auxiliary cameras to observe the main camera positions from top and side views have been added. The chase camera control system achieved real-time performance while following the main character in a typical 3D environment, and maintained an optimal view based on a user specified/selected camera profile

    Bernstein Polynomial-Based Method for Solving Optimal Trajectory Generation Problems

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.3390/s22051869This paper presents a method for the generation of trajectories for autonomous system operations. The proposed method is based on the use of Bernstein polynomial approximations to transcribe infinite dimensional optimization problems into nonlinear programming problems. These, in turn, can be solved using off-the-shelf optimization solvers. The main motivation for this approach is that Bernstein polynomials possess favorable geometric properties and yield computationally efficient algorithms that enable a trajectory planner to efficiently evaluate and enforce constraints along the vehicles� trajectories, including maximum speed and angular rates as well as minimum distance between trajectories and between the vehicles and obstacles. By virtue of these properties and algorithms, feasibility and safety constraints typically imposed on autonomous vehicle operations can be enforced and guaranteed independently of the order of the polynomials. To support the use of the proposed method we introduce BeBOT (Bernstein/B�zier Optimal Trajectories), an open-source toolbox that implements the operations and algorithms for Bernstein polynomials. We show that BeBOT can be used to efficiently generate feasible and collision-free trajectories for single and multiple vehicles, and can be deployed for real-time safety critical applications in complex environments.This research was supported by the Office of Naval Research, grants N000141912106, N000142112091 and N0001419WX00155. Antonio Pascoal was supported by H2020-EU.1.2.2-FET Proactive RAMONES, under Grant GA 101017808 and LARSyS-FCT under Grant UIDB/50009/2020. Isaac Kaminer was supported by the Office of Naval Research grant N0001421WX01974.This research was supported by the Office of Naval Research, grants N000141912106, N000142112091 and N0001419WX00155. Antonio Pascoal was supported by H2020-EU.1.2.2-FET Proactive RAMONES, under Grant GA 101017808 and LARSyS-FCT under Grant UIDB/50009/2020. Isaac Kaminer was supported by the Office of Naval Research grant N0001421WX01974

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Control of constraint weights for an autonomous camera

    Get PDF
    Constraint satisfaction based techniques for camera control has the flexibility to add new constraints easily to increase the quality of a shot. We address the problem of deducing and adjusting constraint weights at run time to guide the movement of the camera in an informed and controlled way in response to the requirement of the shot. This enables the control of weights at the frame level. We analyze the mathematical representation of the cost structure of the domain of constraint search so that the constraint solver can search the domain efficiently. We start with a simple tracking shot of a single target. The cost structure of the domain of search suggests the use of a binary search which searches along a curve for 2D and on a surface for 3D by utilizing the information about the cost structure. The problems of occlusion and collision avoidance have also been addressed
    • …
    corecore