18,301 research outputs found

    A Redundancy Detection Algorithm for Fuzzy Stochastic Multi-Objective Linear Fractional Programming Problems

    Get PDF
    The computational complexity of linear and nonlinear programming problems depends on the number of objective functions and constraints involved and solving a large problem often becomes a difficult task. Redundancy detection and elimination provides a suitable tool for reducing this complexity and simplifying a linear or nonlinear programming problem while maintaining the essential properties of the original system. Although a large number of redundancy detection methods have been proposed to simplify linear and nonlinear stochastic programming problems, very little research has been developed for fuzzy stochastic (FS) fractional programming problems. We propose an algorithm that allows to simultaneously detect both redundant objective function(s) and redundant constraint(s) in FS multi-objective linear fractional programming problems. More precisely, our algorithm reduces the number of linear fuzzy fractional objective functions by transforming them in probabilistic-possibilistic constraints characterized by predetermined confidence levels. We present two numerical examples to demonstrate the applicability of the proposed algorithm and exhibit its efficacy

    Enhanced genetic algorithm-based fuzzy multiobjective strategy to multiproduct batch plant design

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands in product amounts. The design of such plants necessary involves how equipment may be utilized, which means that plant scheduling and production must constitute a basic part of the design problem. Rather than resorting to a traditional probabilistic approach for modeling the imprecision on product demands, this work proposes an alternative treatment by using fuzzy concepts. The design problem is tackled by introducing a new approach based on a multiobjective genetic algorithm, combined wit the fuzzy set theory for computing the objectives as fuzzy quantities. The problem takes into account simultaneous maximization of the fuzzy net present value and of two other performance criteria, i.e. the production delay/advance and a flexibility index. The delay/advance objective is computed by comparing the fuzzy production time for the products to a given fuzzy time horizon, and the flexibility index represents the additional fuzzy production that the plant would be able to produce. The multiobjective optimization provides the Pareto's front which is a set of scenarios that are helpful for guiding the decision's maker in its final choices. About the solution procedure, a genetic algorithm was implemented since it is particularly well-suited to take into account the arithmetic of fuzzy numbers. Furthermore because a genetic algorithm is working on populations of potential solutions, this type of procedure is well adapted for multiobjective optimization

    Developing an Overbooking Fuzzy-Based Mathematical Optimization Model for Multi-Leg Flights

    Get PDF
    Overbooking is one of the most vital revenue management practices that is used in the airline industry. Identification of an overbooking level is a challenging task due to the uncertainties associated with external factors, such as demand for tickets, and inappropriate overbooking levels which may cause revenue losses as well as loss of reputation and customer loyalty. Therefore, the aim of this paper is to propose a fuzzy linear programming model and Genetic Algorithms (GAs) to maximize the overall revenue of a large-scale multi-leg flight network by minimizing the number of empty seats and the number of denied passengers. A fuzzy logic technique is used for modeling the fuzzy demand on overbooking flight tickets and a metaheuristics-based GA technique is adopted to solve large-scale multi-leg flights problem. As part of model verification, the proposed GA is applied to solve a small multi-leg flight linear programming model with a fuzzified demand factor. In addition, experimentation with large-scale problems with different input parameters’ settings such as penalty rate, show-up rate and demand level are also conducted to understand the behavior of the developed model. The validation results show that the proposed GA produces almost identical results to those in a small-scale multi-leg flight problem. In addition, the performance of the large-scale multi-leg flight network represented by a number of KPIs including total booking, denied passengers and net-overbooking profit towards changing these input parameters will also be revealed

    A taxonomy for emergency service station location problem

    Get PDF
    The emergency service station (ESS) location problem has been widely studied in the literature since 1970s. There has been a growing interest in the subject especially after 1990s. Various models with different objective functions and constraints have been proposed in the academic literature and efficient solution techniques have been developed to provide good solutions in reasonable times. However, there is not any study that systematically classifies different problem types and methodologies to address them. This paper presents a taxonomic framework for the ESS location problem using an operations research perspective. In this framework, we basically consider the type of the emergency, the objective function, constraints, model assumptions, modeling, and solution techniques. We also analyze a variety of papers related to the literature in order to demonstrate the effectiveness of the taxonomy and to get insights for possible research directions

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    Penghasilan manual rjngkas penggunaan alat Total Station Sokkia Set5f dan Perisian Sdr Mapping & Design untuk automasi ukur topografi

    Get PDF
    Projek ini dilaksanakan untuk menghasilkan manual ringkas penggunaan alat Total Station Sokkia SET5F dan Perisian SDR Mapping & Design dalam menghasilkan pelan topografi yang lengkap mengikut konsep field to finish. Manual telah dihasilkan dalam dua bentuk iaitu buku dan CD-ROM. Manual ini telah dinilai berdasarkan data yang diperolehi daripada 7 orang responden melalui kaedah Borang Penilaian Manual. Analisis data dilakukan menggunakan perisian SPSS versi 11.0. Hasil analisis skor min menunjukkan kesemua responden bersetuju bahawa manual dalam bentuk buku ini menarik Min ( M ) ^ ^ dan Sisihan Piawai (SD) = .535 tetapi kurang interaktif (M) = 2.29 dan (SD) = 0.488. Berbanding dengan manual dalam format CD-ROM yang mencatat nilai (M) = 3.57 dan (SD) = 0.535 semua responden bersetuju bahawa manual ini mesra pengguna dan lebih interakti

    Affine arithmetic-based methodology for energy hub operation-scheduling in the presence of data uncertainty

    Get PDF
    In this study, the role of self-validated computing for solving the energy hub-scheduling problem in the presence of multiple and heterogeneous sources of data uncertainties is explored and a new solution paradigm based on affine arithmetic is conceptualised. The benefits deriving from the application of this methodology are analysed in details, and several numerical results are presented and discussed
    • 

    corecore