3,812 research outputs found

    Facility layout problem: Bibliometric and benchmarking analysis

    Get PDF
    Facility layout problem is related to the location of departments in a facility area, with the aim of determining the most effective configuration. Researches based on different approaches have been published in the last six decades and, to prove the effectiveness of the results obtained, several instances have been developed. This paper presents a general overview on the extant literature on facility layout problems in order to identify the main research trends and propose future research questions. Firstly, in order to give the reader an overview of the literature, a bibliometric analysis is presented. Then, a clusterization of the papers referred to the main instances reported in literature was carried out in order to create a database that can be a useful tool in the benchmarking procedure for researchers that would approach this kind of problems

    Overview of Dynamic Facility Layout Planning as a Sustainability Strategy

    Full text link
    [EN] The facility layout design problem is significantly relevant within the business operations strategies framework and has emerged as an alternate strategy towards supply chain sustainability. However, its wide coverage in the scientific literature has focused mainly on the static planning approach and disregarded the dynamic approach, which is very useful in real-world applications. In this context, the present article offers a literature review of the dynamic facility layout problem (DFLP). First, a taxonomy of the reviewed papers is proposed based on the problem formulation current trends (related to the problem type, planning phase, planning approach, number of facilities, number of floors, number of departments, space consideration, department shape, department dimensions, department area, and materials handling configuration); the mathematical modeling approach (regarding the type of model, type of objective function, type of constraints, nature of market demand, type of data, and distance metric), and the considered solution approach. Then, the extent to which recent research into DFLP has contributed to supply chain sustainability by addressing its three performance dimensions (economic, environmental, social) is described. Finally, some future research guidelines are provided.This research was funded by the Spanish Ministry of Science, Innovation and Universities Project CADS4.0, grant number RTI2018-101344-B-I00; and the Valencian Community ERDF Programme 2014-2020, grant number IDIFEDER/2018/025.Pérez-Gosende, P.; Mula, J.; Díaz-Madroñero Boluda, FM. (2020). Overview of Dynamic Facility Layout Planning as a Sustainability Strategy. Sustainability. 12(19):1-16. https://doi.org/10.3390/su12198277S1161219Ghassemi Tari, F., & Neghabi, H. (2015). A new linear adjacency approach for facility layout problem with unequal area departments. Journal of Manufacturing Systems, 37, 93-103. doi:10.1016/j.jmsy.2015.09.003Kheirkhah, A., Navidi, H., & Messi Bidgoli, M. (2015). Dynamic Facility Layout Problem: A New Bilevel Formulation and Some Metaheuristic Solution Methods. IEEE Transactions on Engineering Management, 62(3), 396-410. doi:10.1109/tem.2015.2437195Altuntas, S., & Selim, H. (2012). Facility layout using weighted association rule-based data mining algorithms: Evaluation with simulation. Expert Systems with Applications, 39(1), 3-13. doi:10.1016/j.eswa.2011.06.045Ku, M.-Y., Hu, M. H., & Wang, M.-J. (2011). Simulated annealing based parallel genetic algorithm for facility layout problem. International Journal of Production Research, 49(6), 1801-1812. doi:10.1080/00207541003645789Navidi, H., Bashiri, M., & Messi Bidgoli, M. (2012). A heuristic approach on the facility layout problem based on game theory. International Journal of Production Research, 50(6), 1512-1527. doi:10.1080/00207543.2010.550638Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S. M. T., & Fakhrzad, M. B. (2017). Classification of facility layout problems: a review study. The International Journal of Advanced Manufacturing Technology, 94(1-4), 957-977. doi:10.1007/s00170-017-0895-8Carter, C. R., & Rogers, D. S. (2008). A framework of sustainable supply chain management: moving toward new theory. International Journal of Physical Distribution & Logistics Management, 38(5), 360-387. doi:10.1108/09600030810882816Carter, C. R., & Washispack, S. (2018). Mapping the Path Forward for Sustainable Supply Chain Management: A Review of Reviews. Journal of Business Logistics, 39(4), 242-247. doi:10.1111/jbl.12196Roy, V., Schoenherr, T., & Charan, P. (2018). The thematic landscape of literature in sustainable supply chain management (SSCM). International Journal of Operations & Production Management, 38(4), 1091-1124. doi:10.1108/ijopm-05-2017-0260Barbosa-Póvoa, A. P., da Silva, C., & Carvalho, A. (2018). Opportunities and challenges in sustainable supply chain: An operations research perspective. European Journal of Operational Research, 268(2), 399-431. doi:10.1016/j.ejor.2017.10.036Tonelli, F., Evans, S., & Taticchi, P. (2013). Industrial sustainability: challenges, perspectives, actions. International Journal of Business Innovation and Research, 7(2), 143. doi:10.1504/ijbir.2013.052576Sánchez-Flores, R. B., Cruz-Sotelo, S. E., Ojeda-Benitez, S., & Ramírez-Barreto, M. E. (2020). Sustainable Supply Chain Management—A Literature Review on Emerging Economies. Sustainability, 12(17), 6972. doi:10.3390/su12176972Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573-1587. doi:10.1016/j.jclepro.2016.04.150Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408-425. doi:10.1016/j.psep.2018.05.009Khuntia, J., Saldanha, T. J. V., Mithas, S., & Sambamurthy, V. (2018). Information Technology and Sustainability: Evidence from an Emerging Economy. Production and Operations Management, 27(4), 756-773. doi:10.1111/poms.12822Roy, S., Das, M., Ali, S. M., Raihan, A. S., Paul, S. K., & Kabir, G. (2020). Evaluating strategies for environmental sustainability in a supply chain of an emerging economy. Journal of Cleaner Production, 262, 121389. doi:10.1016/j.jclepro.2020.121389Morais, D. O. C., & Silvestre, B. S. (2018). Advancing social sustainability in supply chain management: Lessons from multiple case studies in an emerging economy. Journal of Cleaner Production, 199, 222-235. doi:10.1016/j.jclepro.2018.07.097Stindt, D. (2017). A generic planning approach for sustainable supply chain management - How to integrate concepts and methods to address the issues of sustainability? Journal of Cleaner Production, 153, 146-163. doi:10.1016/j.jclepro.2017.03.126MOSLEMIPOUR, G., LEE, T. S., & LOONG, Y. T. (2017). Performance Analysis of Intelligent Robust Facility Layout Design. Chinese Journal of Mechanical Engineering, 30(2), 407-418. doi:10.1007/s10033-017-0073-9Emami, S., & S. Nookabadi, A. (2013). Managing a new multi-objective model for the dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 68(9-12), 2215-2228. doi:10.1007/s00170-013-4820-5Al Hawarneh, A., Bendak, S., & Ghanim, F. (2019). Dynamic facilities planning model for large scale construction projects. Automation in Construction, 98, 72-89. doi:10.1016/j.autcon.2018.11.021Pournaderi, N., Ghezavati, V. R., & Mozafari, M. (2019). Developing a mathematical model for the dynamic facility layout problem considering material handling system and optimizing it using cloud theory-based simulated annealing algorithm. SN Applied Sciences, 1(8). doi:10.1007/s42452-019-0865-xTuranoğlu, B., & Akkaya, G. (2018). A new hybrid heuristic algorithm based on bacterial foraging optimization for the dynamic facility layout problem. Expert Systems with Applications, 98, 93-104. doi:10.1016/j.eswa.2018.01.011Moslemipour, G., Lee, T. S., & Rilling, D. (2011). A review of intelligent approaches for designing dynamic and robust layouts in flexible manufacturing systems. The International Journal of Advanced Manufacturing Technology, 60(1-4), 11-27. doi:10.1007/s00170-011-3614-xTebaldi, L., Bigliardi, B., & Bottani, E. (2018). Sustainable Supply Chain and Innovation: A Review of the Recent Literature. Sustainability, 10(11), 3946. doi:10.3390/su10113946Tseng, M.-L., Islam, M. S., Karia, N., Fauzi, F. A., & Afrin, S. (2019). A literature review on green supply chain management: Trends and future challenges. Resources, Conservation and Recycling, 141, 145-162. doi:10.1016/j.resconrec.2018.10.009Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252, 119869. doi:10.1016/j.jclepro.2019.119869Boar, A., Bastida, R., & Marimon, F. (2020). A Systematic Literature Review. Relationships between the Sharing Economy, Sustainability and Sustainable Development Goals. Sustainability, 12(17), 6744. doi:10.3390/su12176744Novais, L., Maqueira, J. M., & Ortiz-Bas, Á. (2019). A systematic literature review of cloud computing use in supply chain integration. Computers & Industrial Engineering, 129, 296-314. doi:10.1016/j.cie.2019.01.056Masi, D., Day, S., & Godsell, J. (2017). Supply Chain Configurations in the Circular Economy: A Systematic Literature Review. Sustainability, 9(9), 1602. doi:10.3390/su9091602Zavala-Alcívar, A., Verdecho, M.-J., & Alfaro-Saiz, J.-J. (2020). A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain. Sustainability, 12(16), 6300. doi:10.3390/su12166300Li, K., Rollins, J., & Yan, E. (2017). Web of Science use in published research and review papers 1997–2017: a selective, dynamic, cross-domain, content-based analysis. Scientometrics, 115(1), 1-20. doi:10.1007/s11192-017-2622-5Kulturel-Konak, S., & Konak, A. (2014). A large-scale hybrid simulated annealing algorithm for cyclic facility layout problems. Engineering Optimization, 47(7), 963-978. doi:10.1080/0305215x.2014.933825Madhusudanan Pillai, V., Hunagund, I. B., & Krishnan, K. K. (2011). Design of robust layout for Dynamic Plant Layout Problems. Computers & Industrial Engineering, 61(3), 813-823. doi:10.1016/j.cie.2011.05.014Peng, Y., Zeng, T., Fan, L., Han, Y., & Xia, B. (2018). An Improved Genetic Algorithm Based Robust Approach for Stochastic Dynamic Facility Layout Problem. Discrete Dynamics in Nature and Society, 2018, 1-8. doi:10.1155/2018/1529058McKendall, A. R., & Hakobyan, A. (2010). Heuristics for the dynamic facility layout problem with unequal-area departments. European Journal of Operational Research, 201(1), 171-182. doi:10.1016/j.ejor.2009.02.028Yang, C.-L., Chuang, S.-P., & Hsu, T.-S. (2010). A genetic algorithm for dynamic facility planning in job shop manufacturing. The International Journal of Advanced Manufacturing Technology, 52(1-4), 303-309. doi:10.1007/s00170-010-2733-0Abedzadeh, M., Mazinani, M., Moradinasab, N., & Roghanian, E. (2012). Parallel variable neighborhood search for solving fuzzy multi-objective dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 65(1-4), 197-211. doi:10.1007/s00170-012-4160-xGuan, X., Dai, X., Qiu, B., & Li, J. (2012). A revised electromagnetism-like mechanism for layout design of reconfigurable manufacturing system. Computers & Industrial Engineering, 63(1), 98-108. doi:10.1016/j.cie.2012.01.016Jolai, F., Tavakkoli-Moghaddam, R., & Taghipour, M. (2012). A multi-objective particle swarm optimisation algorithm for unequal sized dynamic facility layout problem with pickup/drop-off locations. International Journal of Production Research, 50(15), 4279-4293. doi:10.1080/00207543.2011.613863Kia, R., Baboli, A., Javadian, N., Tavakkoli-Moghaddam, R., Kazemi, M., & Khorrami, J. (2012). Solving a group layout design model of a dynamic cellular manufacturing system with alternative process routings, lot splitting and flexible reconfiguration by simulated annealing. Computers & Operations Research, 39(11), 2642-2658. doi:10.1016/j.cor.2012.01.012McKendall, A. R., & Liu, W.-H. (2012). New Tabu search heuristics for the dynamic facility layout problem. International Journal of Production Research, 50(3), 867-878. doi:10.1080/00207543.2010.545446Hosseini-Nasab, H., & Emami, L. (2013). A hybrid particle swarm optimisation for dynamic facility layout problem. International Journal of Production Research, 51(14), 4325-4335. doi:10.1080/00207543.2013.774486Kaveh, M., Dalfard, V. M., & Amiri, S. (2013). A new intelligent algorithm for dynamic facility layout problem in state of fuzzy constraints. Neural Computing and Applications, 24(5), 1179-1190. doi:10.1007/s00521-013-1339-5KIA, R., JAVADIAN, N., PAYDAR, M. M., & SAIDI-MEHRABAD, M. (2013). A SIMULATED ANNEALING FOR INTRA-CELL LAYOUT DESIGN OF DYNAMIC CELLULAR MANUFACTURING SYSTEMS WITH ROUTE SELECTION, PURCHASING MACHINES AND CELL RECONFIGURATION. Asia-Pacific Journal of Operational Research, 30(04), 1350004. doi:10.1142/s0217595913500048Mazinani, M., Abedzadeh, M., & Mohebali, N. (2012). Dynamic facility layout problem based on flexible bay structure and solving by genetic algorithm. The International Journal of Advanced Manufacturing Technology, 65(5-8), 929-943. doi:10.1007/s00170-012-4229-6Samarghandi, H., Taabayan, P., & Behroozi, M. (2013). Metaheuristics for fuzzy dynamic facility layout problem with unequal area constraints and closeness ratings. The International Journal of Advanced Manufacturing Technology, 67(9-12), 2701-2715. doi:10.1007/s00170-012-4685-zYu-Hsin Chen, G. (2013). A new data structure of solution representation in hybrid ant colony optimization for large dynamic facility layout problems. International Journal of Production Economics, 142(2), 362-371. doi:10.1016/j.ijpe.2012.12.012Bozorgi, N., Abedzadeh, M., & Zeinali, M. (2014). Tabu search heuristic for efficiency of dynamic facility layout problem. The International Journal of Advanced Manufacturing Technology, 77(1-4), 689-703. doi:10.1007/s00170-014-6460-9CHEN, G. Y.-H., & LO, J.-C. (2014). DYNAMIC FACILITY LAYOUT WITH MULTI-OBJECTIVES. Asia-Pacific Journal of Operational Research, 31(04), 1450027. doi:10.1142/s0217595914500274Hosseini, S., Khaled, A. A., & Vadlamani, S. (2014). Hybrid imperialist competitive algorithm, variable neighborhood search, and simulated annealing for dynamic facility layout problem. Neural Computing and Applications, 25(7-8), 1871-1885. doi:10.1007/s00521-014-1678-xKia, R., Khaksar-Haghani, F., Javadian, N., & Tavakkoli-Moghaddam, R. (2014). Solving a multi-floor layout design model of a dynamic cellular manufacturing system by an efficient genetic algorithm. Journal of Manufacturing Systems, 33(1), 218-232. doi:10.1016/j.jmsy.2013.12.005Nematian, J. (2014). A robust single row facility layout problem with fuzzy random variables. The International Journal of Advanced Manufacturing Technology, 72(1-4), 255-267. doi:10.1007/s00170-013-5564-yPourvaziri, H., & Naderi, B. (2014). A hybrid multi-population genetic algorithm for the dynamic facility layout problem. Applied Soft Computing, 24, 457-469. doi:10.1016/j.asoc.2014.06.051Derakhshan Asl, A., & Wong, K. Y. (2015). Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization. Journal of Intelligent Manufacturing, 28(6), 1317-1336. doi:10.1007/s10845-015-1053-5Li, L., Li, C., Ma, H., & Tang, Y. (2015). An Optimization Method for the Remanufacturing Dynamic Facility Layout Problem with Uncertainties. Discrete Dynamics in Nature and Society, 2015, 1-11. doi:10.1155/2015/685408Ulutas, B., & Islier, A. A. (2015). Dynamic facility layout problem in footwear industry. Journal of Manufacturing Systems, 36, 55-61. doi:10.1016/j.jmsy.2015.03.004Zarea Fazlelahi, F., Pournader, M., Gharakhani, M., & Sadjadi, S. J. (2016). A robust approach to design a single facility layout plan in dynamic manufacturing environments using a permutation-based genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(12), 2264-2274. doi:10.1177/0954405415615728Hosseini, S. S., & Seifbarghy, M. (2016). A novel meta-heuristic algorithm for multi-objective dynamic facility layout problem. RAIRO - Operations Research, 50(4-5), 869-890. doi:10.1051/ro/2016057Pourvaziri, H., & Pierreval, H. (2017). Dynamic facility layout problem based on open queuing network theory. European Journal of Operational Research, 259(2), 538-553. doi:10.1016/j.ejor.2016.11.011Tayal, A., & Singh, S. P. (2016). Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout problem. Annals of Operations Research, 270(1-2), 489-514. doi:10.1007/s10479-016-2237-xKumar, R., & Singh, S. P. (2017). A similarity score-based two-phase heuristic approach to solve the dynamic cellular facility layout for manufacturing systems. Engineering Optimization, 49(11), 1848-1867. doi:10.1080/0305215x.2016.1274205Liu, J., Wang, D., He, K., & Xue, Y. (2017). Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem. European Journal of Operational Research, 262(3), 1052-1063. doi:10.1016/j.ejor.2017.04.002Vitayasak, S., Pongcharoen, P., & Hicks, C. (2017). A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm. International Journal of Production Economics, 190, 146-157. doi:10.1016/j.ijpe.2016.03.019Xiao, Y., Xie, Y., Kulturel-Konak, S., & Konak, A. (2017). A problem evolution algorithm with linear programming for the dynamic facility layout problem—A general layout formulation. Computers & Operations Research, 88, 187-207. doi:10.1016/j.cor.2017.06.025Li, J., Tan, X., & Li, J. (2018). Research on Dynamic Facility Layout Problem of Manufacturing Unit Considering Human Factors. Mathematical Problems in Engineering, 2018, 1-13. doi:10.1155/2018/6040561Vitayasak, S., & Pongcharoen, P. (2018). Performance improvement of Teaching-Learning-Based Optimisation for robust machine layout design. Expert Systems with Applications, 98, 129-152. doi:10.1016/j.eswa.2018.01.005Wei, X., Yuan, S., & Ye, Y. (2019). Optimizing facility layout planning for reconfigurable manufacturing system based on chaos genetic algorithm. Production & Manufacturing Research, 7(1), 109-124. doi:10.1080/21693277.2019.1602486Kulturel-Konak, S. (2007). Approaches to uncertainties in facility layout problems: Perspectives at the beginning of the 21st Century. Journal of Intelligent Manufacturing, 18(2), 273-284. doi:10.1007/s10845-007-0020-1Sharma, P., & Singhal, S. (2016). Implementation of fuzzy TOPSIS methodology in selection of procedural approach for facility layout planning. The International Journal of Advanced Manufacturing Technology, 88(5-8), 1485-1493. doi:10.1007/s00170-016-8878-8Bukchin, Y., & Tzur, M. (2014). A new MILP approach for the facility process-layout design problem with rectangular and L/T shape departments. International Journal of Production Research, 52(24), 7339-7359. doi:10.1080/00207543.2014.930534Meller, R. D., Kirkizoglu, Z., & Chen, W. (2010). A new optimization model to support a bottom-up approach to facility design. Computers & Operations Research, 37(1), 42-49. doi:10.1016/j.cor.2009.03.018Feng, J., & Che, A. (2018). Novel integer linear programming models for the facility layout problem with fixed-size rectangular departments. Computers & Operations Research, 95, 163-171. doi:10.1016/j.cor.2018.03.013Allahyari, M. Z., & Azab, A. (2018). Mathematical modeling and multi-start search simulated annealing for unequal-area facility layout problem. Expert Systems with Applications, 91, 46-62. doi:10.1016/j.eswa.2017.07.049Ahmadi, A., Pishvaee, M. S., & Akbari Jokar, M. R. (2017). A survey on multi-floor facility layout problems. Computers & Industrial Engineering, 107, 158-170. doi:10.1016/j.cie.2017.03.015Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255-267. doi:10.1016/j.arcontrol.2007.04.001Grobelny, J., & Michalski, R. (2017). A novel version of simulated annealing based on linguistic patterns for solving facility layout problems. Knowledge-Based Systems, 124, 55-69. doi:10.1016/j.knosys.2017.03.001Hathhorn, J., Sisikoglu, E., & Sir, M. Y. (2013). A multi-objective mixed-integer programming model for a multi-floor facility layout. International Journal of Production Research, 51(14), 4223-4239. doi:10.1080/00207543.2012.75348

    Multi-objective optimization in single-row layout design using a genetic algorithm

    Get PDF
    This paper presents the development of a genetic algorithm for determining a common linear machine sequence for multi-products with different operation sequences and facilities with a limited number of duplicate machine types available for a job. This work aims to minimize the total flow distance travelled by products, reduce the number of machines arranged in the final linear sequence, and decrease the total investment cost of the machines used in the final sequence. We assume that product flow runs only in the forward direction, either via in-sequence or bypass movement. We demonstrate the effectiveness of the proposed algorithm by solving a typical layout design problem taken from literature, and several randomly generated problems. Results indicate that the proposed algorithm serves as a practical decision support tool for resolving layout problems in manufacturing facilities

    Facility Layout Planning and Job Shop Scheduling – A survey

    Get PDF

    Heuristics and Metaheuristics Approaches for Facility Layout Problems: A Survey

    Get PDF
    Facility Layout Problem (FLP) is a NP-hard problem concerned with the arrangement of facilities as to minimize the distance travelled between all pairs of facilities. Many exact and approximate approaches have been proposed with an extensive applicability to deal with this problem. This paper studies the fundamentals of some well-known heuristics and metaheuristics used in solving the FLPs. It is hoped that this paper will trigger researchers for in-depth studies in FLPs looking into more specific interest such as equal or unequal FLPs

    Dynamic Facility Layout for Cellular and Reconfigurable Manufacturing using Dynamic Programming and Multi-Objective Metaheuristics

    Get PDF
    The facility layout problem is one of the most classical yet influential problems in the planning of production systems. A well-designed layout minimizes the material handling costs (MHC), personnel flow distances, work in process, and improves the performance of these systems in terms of operating costs and time. Because of this importance, facility layout has a rich literature in industrial engineering and operations research. Facility layout problems (FLPs) are generally concerned with positioning a set of facilities to satisfy some criteria or objectives under certain constraints. Traditional FLPs try to put facilities with the high material flow as close as possible to minimize the MHC. In static facility layout problems (SFLP), the product demands and mixes are considered deterministic parameters with constant values. The material flow between facilities is fixed over the planning horizon. However, in today’s market, manufacturing systems are constantly facing changes in product demands and mixes. These changes make it necessary to change the layout from one period to the other to be adapted to the changes. Consequently, there is a need for dynamic approaches of FLP that aim to generate layouts with high adaptation concerning changes in product demand and mix. This thesis focuses on studying the layout problems, with an emphasis on the changing environment of manufacturing systems. Despite the fact that designing layouts within the dynamic environment context is more realistic, the SFLP is observed to have been remained worthy to be analyzed. Hence, a math-heuristic approach is developed to solve an SFLP. To this aim, first, the facilities are grouped into many possible vertical clusters, second, the best combination of the generated clusters to be in the final layout are selected by solving a linear programming model, and finally, the selected clusters are sequenced within the shop floor. Although the presented math-heuristic approach is effective in solving SFLP, applying approaches to cope with the changing manufacturing environment is required. One of the most well-known approaches to deal with the changing manufacturing environment is the dynamic facility layout problem (DFLP). DFLP suits reconfigurable manufacturing systems since their machinery and material handling devices are reconfigurable to encounter the new necessities for the variations of product mix and demand. In DFLP, the planning horizon is divided into some periods. The goal is to find a layout for each period to minimize the total MHC for all periods and the total rearrangement costs between the periods. Dynamic programming (DP) has been known as one of the effective methods to optimize DFLP. In the DP method, all the possible layouts for every single period are generated and given to DP as its state-space. However, by increasing the number of facilities, it is impossible to give all the possible layouts to DP and only a restricted number of layouts should be fed to DP. This leads to ignoring some layouts and losing the optimality; to deal with this difficulty, an improved DP approach is proposed. It uses a hybrid metaheuristic algorithm to select the initial layouts for DP that lead to the best solution of DP for DFLP. The proposed approach includes two phases. In the first phase, a large set of layouts are generated through a heuristic method. In the second phase, a genetic algorithm (GA) is applied to search for the best subset of layouts to be given to DP. DP, improved by starting with the most promising initial layouts, is applied to find the multi-period layout. Finally, a tabu search algorithm is utilized for further improvement of the solution obtained by improved DP. Computational experiments show that improved DP provides more efficient solutions than DP approaches in the literature. The improved DP can efficiently solve DFLP and find the best layout for each period considering both material handling and layout rearrangement costs. However, rearrangement costs may include some unpredictable costs concerning interruption in production or moving of facilities. Therefore, in some cases, managerial decisions tend to avoid any rearrangements. To this aim, a semi-robust approach is developed to optimize an FLP in a cellular manufacturing system (CMS). In this approach, the pick-up/drop-off (P/D) points of the cells are changed to adapt the layout with changes in product demand and mix. This approach suits more a cellular flexible manufacturing system or a conventional system. A multi-objective nonlinear mixed-integer programming model is proposed to simultaneously search for the optimum number of cells, optimum allocation of facilities to cells, optimum intra- and inter-cellular layout design, and the optimum locations of the P/D points of the cells in each period. A modified non-dominated sorting genetic algorithm (MNSGA-II) enhanced by an improved non-dominated sorting strategy and a modified dynamic crowding distance procedure is used to find Pareto-optimal solutions. The computational experiments are carried out to show the effectiveness of the proposed MNSGA-II against other popular metaheuristic algorithms

    An Application of an Unequal-Area Facilities Layout Problem with Fixed-Shape Facilities

    Get PDF
    The unequal-area facility layout problem (UA-FLP) is the problem of locating rectangular facilities on a rectangular floor space such that facilities do not overlap while optimizing some objective. The objective considered in this paper is minimizing the total distance materials travel between facilities. The UA-FLP considered in this paper considers facilities with fixed dimension and was motivated by the investigation of layout options for a production area at the Toyota Motor Manufacturing West Virginia (TMMWV) plant in Buffalo, WV, USA. This paper presents a mathematical model and a genetic algorithm for locating facilities on a continuous plant floor. More specifically, a genetic algorithm, which consists of a boundary search heuristic (BSH), a linear program, and a dual simplex method, is developed for an UA-FLP. To test the performance of the proposed technique, several test problems taken from the literature are used in the analysis. The results show that the proposed heuristic performs well with respect to solution quality and computational time

    Overview of Multi-Objective Optimization Approaches in Construction Project Management

    Get PDF
    The difficulties that are met in construction projects include budget issues, contractual time constraints, complying with sustainability rating systems, meeting local building codes, and achieving the desired quality level, to name but a few. Construction researchers have proposed and construction practitioners have used optimization strategies to meet various objectives over the years. They started out by optimizing one objective at a time (e.g., minimizing construction cost) while disregarding others. Because the objectives of construction projects often conflict with each other, single-objective optimization does not offer practical solutions as optimizing one objective would often adversely affect the other objectives that are not being optimized. They then experimented with multi-objective optimization. The many multi-objective optimization approaches that they used have their own advantages and drawbacks when used in some scenarios with different sets of objectives. In this chapter, a review is presented of 16 multi-objective optimization approaches used in 55 research studies performed in the construction industry and that were published in the period 2012–2016. The discussion highlights the strengths and weaknesses of these approaches when used in different scenarios

    A simple heuristic for linear sequencing of machines in layout design

    Get PDF
    This paper presents a simple heuristic to determine a common linear machine sequence for multiple products with different operation sequences and a limited number of duplicate machine types available for the job. The heuristic is based on minimisation of the total flow distance travelled by a product on the linear machine sequence. It is assumed that the flows of products are allowed only in the forward direction, either in-sequence or by-pass. It is also assumed that backtrack movements are not allowed. The effectiveness of the proposed heuristic is demonstrated through the solutions of two typical layout design problems taken from the literature. Subsequently, a number of additional problems are solved and their results are compared with the results applying existing methods. The results indicate that the proposed method can be an effective tool in solving layout design problems
    corecore