375 research outputs found

    Numerical study of oxygen diffusion from capillary to tissues during hypoxia with external force effects

    Get PDF
    A mathematical model to simulate oxygen delivery through a capillary to tissues under the influence of an external force field is presented. The multi-term general fractional diffusion equation containing force terms and a time dependent absorbent term is taken into account. Fractional calculus is applied to describe the phenomenon of sub-diffusion of oxygen in both transverse and longitudinal directions. A new computational algorithm, i.e., the new iterative method (NIM) is employed to solve the spatio-temporal fractional partial differential equation subject to appropriate physical boundary conditions. Validation of NIM solutions is achieved with a modified Adomian decomposition method (MADM). A parametric study is conducted for three loading scenarios on the capillary-radial force alone, axial force alone and the combined case of both forces. The results demonstrate that the force terms markedly influence the oxygen diffusion process. For example, the radial force exerts a more profound effect than axial force on sub-diffusion of oxygen indicating that careful manipulation of these forces on capillary tissues may assist in the effective reduction of hypoxia or other oxygen depletion phenomena

    Solutions of System of Fractional Partial Differential Equations

    Get PDF
    In this paper, system of fractional partial differential equation which has numerous applications in many fields of science is considered. Adomian decomposition method, a novel method is used to solve these type of equations. The solutions are derived in convergent series form which shows the effectiveness of the method for solving wide variety of fractional differential equations

    A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions

    Full text link
    In this paper, the fractional order of rational Bessel functions collocation method (FRBC) to solve Thomas-Fermi equation which is defined in the semi-infinite domain and has singularity at x=0x = 0 and its boundary condition occurs at infinity, have been introduced. We solve the problem on semi-infinite domain without any domain truncation or transformation of the domain of the problem to a finite domain. This approach at first, obtains a sequence of linear differential equations by using the quasilinearization method (QLM), then at each iteration solves it by FRBC method. To illustrate the reliability of this work, we compare the numerical results of the present method with some well-known results in other to show that the new method is accurate, efficient and applicable

    Fractal boundary value problems for integral and differential equations with local fractional operators

    Get PDF
    In the present paper we investigate the fractal boundary value problems for the Fredholm and Volterra integral equations, heat conduction and wave equations by using the local fractional decomposition method. The operator is described by the local fractional operators. The four illustrative examples are given to elaborate the accuracy and reliability of the obtained results
    • …
    corecore