13,315 research outputs found

    Computer algebra tools for Feynman integrals and related multi-sums

    Full text link
    In perturbative calculations, e.g., in the setting of Quantum Chromodynamics (QCD) one aims at the evaluation of Feynman integrals. Here one is often faced with the problem to simplify multiple nested integrals or sums to expressions in terms of indefinite nested integrals or sums. Furthermore, one seeks for solutions of coupled systems of linear differential equations, that can be represented in terms of indefinite nested sums (or integrals). In this article we elaborate the main tools and the corresponding packages, that we have developed and intensively used within the last 10 years in the course of our QCD-calculations

    Recent Symbolic Summation Methods to Solve Coupled Systems of Differential and Difference Equations

    Full text link
    We outline a new algorithm to solve coupled systems of differential equations in one continuous variable xx (resp. coupled difference equations in one discrete variable NN) depending on a small parameter ϵ\epsilon: given such a system and given sufficiently many initial values, we can determine the first coefficients of the Laurent-series solutions in ϵ\epsilon if they are expressible in terms of indefinite nested sums and products. This systematic approach is based on symbolic summation algorithms in the context of difference rings/fields and uncoupling algorithms. The proposed method gives rise to new interesting applications in connection with integration by parts (IBP) methods. As an illustrative example, we will demonstrate how one can calculate the ϵ\epsilon-expansion of a ladder graph with 6 massive fermion lines

    Towards a four-loop form factor

    Full text link
    The four-loop, two-point form factor contains the first non-planar correction to the lightlike cusp anomalous dimension. This anomalous dimension is a universal function which appears in many applications. Its planar part in N = 4 SYM is known, in principle, exactly from AdS/CFT and integrability while its non-planar part has been conjectured to vanish. The integrand of the form factor of the stress-tensor multiplet in N = 4 SYM including the non-planar part was obtained in previous work. We parametrise the difficulty of integrating this integrand. We have obtained a basis of master integrals for all integrals in the four-loop, two-point class in two ways. First, we computed an IBP reduction of the integrand of the N = 4 form factor using massive computer algebra (Reduze). Second, we computed a list of master integrals based on methods of the Mint package, suitably extended using Macaulay2 / Singular. The master integrals obtained in both ways are consistent with some minor exceptions. The second method indicates that the master integrals apply beyond N = 4 SYM, in particular to QCD. The numerical integration of several of the master integrals will be reported and remaining obstacles will be outlinedComment: 9 Pages, Radcor/Loopfest 2015 Proceeding

    A novel approach to integration by parts reduction

    Get PDF
    Integration by parts reduction is a standard component of most modern multi-loop calculations in quantum field theory. We present a novel strategy constructed to overcome the limitations of currently available reduction programs based on Laporta's algorithm. The key idea is to construct algebraic identities from numerical samples obtained from reductions over finite fields. We expect the method to be highly amenable to parallelization, show a low memory footprint during the reduction step, and allow for significantly better run-times.Comment: 4 pages. Version 2 is the final, published version of this articl

    Nested (inverse) binomial sums and new iterated integrals for massive Feynman diagrams

    Full text link
    Nested sums containing binomial coefficients occur in the computation of massive operator matrix elements. Their associated iterated integrals lead to alphabets including radicals, for which we determined a suitable basis. We discuss algorithms for converting between sum and integral representations, mainly relying on the Mellin transform. To aid the conversion we worked out dedicated rewrite rules, based on which also some general patterns emerging in the process can be obtained.Comment: 13 pages LATEX, one style file, Proceedings of Loops and Legs in Quantum Field Theory -- LL2014,27 April 2014 -- 02 May 2014 Weimar, German

    Lie point symmetries and ODEs passing the Painlev\'e test

    Full text link
    The Lie point symmetries of ordinary differential equations (ODEs) that are candidates for having the Painlev\'e property are explored for ODEs of order n=2,,5n =2, \dots ,5. Among the 6 ODEs identifying the Painlev\'e transcendents only PIIIP_{III}, PVP_V and PVIP_{VI} have nontrivial symmetry algebras and that only for very special values of the parameters. In those cases the transcendents can be expressed in terms of simpler functions, i.e. elementary functions, solutions of linear equations, elliptic functions or Painlev\'e transcendents occurring at lower order. For higher order or higher degree ODEs that pass the Painlev\'e test only very partial classifications have been published. We consider many examples that exist in the literature and show how their symmetry groups help to identify those that may define genuinely new transcendents

    A toolbox to solve coupled systems of differential and difference equations

    Full text link
    We present algorithms to solve coupled systems of linear differential equations, arising in the calculation of massive Feynman diagrams with local operator insertions at 3-loop order, which do {\it not} request special choices of bases. Here we assume that the desired solution has a power series representation and we seek for the coefficients in closed form. In particular, if the coefficients depend on a small parameter \ep (the dimensional parameter), we assume that the coefficients themselves can be expanded in formal Laurent series w.r.t.\ \ep and we try to compute the first terms in closed form. More precisely, we have a decision algorithm which solves the following problem: if the terms can be represented by an indefinite nested hypergeometric sum expression (covering as special cases the harmonic sums, cyclotomic sums, generalized harmonic sums or nested binomial sums), then we can calculate them. If the algorithm fails, we obtain a proof that the terms cannot be represented by the class of indefinite nested hypergeometric sum expressions. Internally, this problem is reduced by holonomic closure properties to solving a coupled system of linear difference equations. The underlying method in this setting relies on decoupling algorithms, difference ring algorithms and recurrence solving. We demonstrate by a concrete example how this algorithm can be applied with the new Mathematica package \texttt{SolveCoupledSystem} which is based on the packages \texttt{Sigma}, \texttt{HarmonicSums} and \texttt{OreSys}. In all applications the representation in xx-space is obtained as an iterated integral representation over general alphabets, generalizing Poincar\'{e} iterated integrals
    corecore