17 research outputs found

    Solving hidden terminal problem in MU-MIMO WLANs with fairness and throughput-aware precoding and a degrees-of-freedom-based MAC design

    Get PDF
    Š 2016, Shrestha et al. We generally emphasize that the zeroforcing (ZF) technique backed by an appropriate medium access control (MAC) protocol can be used to address the inevitable hidden terminal (HT) problem in multi-user multiple input multiple output (MU-MIMO) wireless local area network (WLAN) settings. However, to address the implementation-specific requirements of MU-MIMO WLANs, such as fairness in client access and throughput of the network, we propose a fairness and a throughput-aware ZF precoding in our design at the physical layer (PHY). This precoding scheme not only solves the HT problem but also meets the fairness and the throughput requirements of MU-MIMO WLANs. Besides, we design a MAC layer protocol, supportive to PHY, which decides transmission opportunities (TXOPs) among access points (APs) based on the available degrees of freedom (DoF). We make a mandatory provision in our design that APs should have a sufficient DoF. This can ensure collision-free transmission whenever APs/transmitters transmit in the HT scenario. Additionally, we design an improved channel sounding process for MU-MIMO WLANs with a less signaling overhead than IEEE802.11ac. We demonstrate the feasibility of our PHY in a USRP2/GNU Radio testbed prototype in the lab settings. It is found that our PHY improves the SNR and effective SNR of the received signal from about 5 to 11 dB in the HT scenario. The performance of our MAC design is checked with simulation studies in a typical six-antenna AP and clients scenario. We observe that our MAC protocol has a slightly higher signaling overhead than traditional ready to send/clear to send (RTS/CTS) due to design constraints; however, the signaling time overheads are reduced by 98.67 Οs compared to IEEE802.11ac. Another interesting aspect to highlight is the constant Throughput gain of four to five times that of the traditional RTS/CTS. Our MAC protocol obtains this gain as early as 98.67 Οs compared to IEEE802.11ac

    Addressing the hidden terminal problem in MU-MIMO WLANs with relaxed zero-forcing approach

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.An ever-increasing data rate demand, mainly due to the proliferation of numerous smart devices, enterprises’ mission critical networks, and industry automation, has mounted tremendous pressure on today’s Wireless Local Area Networks (WLANs). Several avenues such as bandwidth, constellation density, the Multiple Input Multiple Output (MIMO) technique, etc., have been explored, e.g., IEEE802.11n/ac standards, to keep up with the demand. Future WLAN standard, e.g., IEEE802.11ax, with potential technologies such as uplink Multi-User (MU)-MIMO, full duplex transmission, etc., is anticipated by 2019. Having said that, there has been a strong emphasis on solving the technical issues with WLANs along with the addition of new frontiers in order to cope with the data rate demanded. One such appending decade-long issue is the inevitable Hidden Terminal (HT) problem in a distributive, decentralised and densely deployed WLANs, which fundamentally arises because of the transmission time overlaps between different transmitters operating at a particular frequency. The consequence is that it causes collisions of signals, which sharply reduces the system throughput. In the context of MU-MIMO based WLANs, several designs for a general network scenario, without the consideration of the HT problem, have been proposed, bringing efficiency by avoiding the collision of signals. However, a dedicated design, which could effectively address the HT problem in MU-MIMO WLANs and also become interoperable (with legacy standards) and feasible with existing hardware, is lacking to the best of our knowledge. In this thesis, we propose a solution for the HT problem which has three fundamental attributes. First, a) at the Physical (PHY) layer, the Zero-forcing (ZF) transmission strategy with fairness and throughput aware precoding is proposed, b) a hybrid scheduling scheme, combining the packet position-based First In First Out (FIFO) and channel quality-based scheme, namely the Best of the Two Choices, is designed, c) at the Medium Access Control (MAC) layer, Degrees-of-Freedom (DoF) based Transmission Opportunity (TXOP) for Access Points (APs) is developed which is backed by an extended Point Coordination Function (PCF), d) an explicit channel acquisition framework is proposed for ZF which has a reduced signaling time overhead of 98.6740 μs compared to IEEE802.11ac. e) performance evaluation methodologies are: i) hardware testbed results of the PHY strategy, which shows a received SNR gain of about 6 dB on average, and about 10 dB in comparison to the HT scenario, ii) simulation results of the MAC design, which shows a constant throughput gain of 4 − 5 times w.r.t. the popular Request to Send/Clear to Send (RTS/CTS) solution. Second, to address the interoperability issue, we purposefully use the standard frame format except for some required logical changes. Notably, the transition mechanism of our design, and for any MAC that uses standard frame formats, is investigated meticulously. The transition condition, transition steps and transition frame formats are detailed. Third, to address a practical constraint of an imperfect Channel State Information (CSI) at APs, a) we incorporate the Finite Rate Feedback (FRF) model in our solution. The effects on system parameters such as quantisation error bounds, throughput loss w.r.t. perfect CSI, etc., are discussed with closed-form analytical expressions, b) instead of an ideal ZF technique, a Relaxed ZF (RZF) framework is considered, in which the interference and power constraints of the optimisation problem are relaxed to the interference upper bound and to the maximum transmit power respectively. Our results lead to a distributive algorithm for calculating the optimal ZF precoding vector which suits the distributive, decentralised and uncoordinated nature of MU-MIMO WLANs

    MAC/PHY Co-Design of CSMA Wireless Networks Using Software Radios.

    Full text link
    In the past decade, CSMA-based protocols have spawned numerous network standards (e.g., the WiFi family), and played a key role in improving the ubiquity of wireless networks. However, the rapid evolution of CSMA brings unprecedented challenges, especially the coexistence of different network architectures and communications devices. Meanwhile, many intrinsic limitations of CSMA have been the main obstacle to the performance of its derivatives, such as ZigBee, WiFi, and mesh networks. Most of these problems are observed to root in the abstract interface of the CSMA MAC and PHY layers --- the MAC simply abstracts the advancement of PHY technologies as a change of data rate. Hence, the benefits of new PHY technologies are either not fully exploited, or they even may harm the performance of existing network protocols due to poor interoperability. In this dissertation, we show that a joint design of the MAC/PHY layers can achieve a substantially higher level of capacity, interoperability and energy efficiency than the weakly coupled MAC/PHY design in the current CSMA wireless networks. In the proposed MAC/PHY co-design, the PHY layer exposes more states and capabilities to the MAC, and the MAC performs intelligent adaptation to and control over the PHY layer. We leverage the reconfigurability of software radios to design smart signal processing algorithms that meet the challenge of making PHY capabilities usable by the MAC layer. With the approach of MAC/PHY co-design, we have revisited the primitive operations of CSMA (collision avoidance, carrier signaling, carrier sensing, spectrum access and transmitter cooperation), and overcome its limitations in relay and broadcast applications, coexistence of heterogeneous networks, energy efficiency, coexistence of different spectrum widths, and scalability for MIMO networks. We have validated the feasibility and performance of our design using extensive analysis, simulation and testbed implementation.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/95944/1/xyzhang_1.pd

    Practical interference mitigation for Wi-Fi systems

    Get PDF
    Wi-Fi's popularity is also its Achilles' heel since in the dense deployments of multiple Wi-Fi networks typical in urban environments, concurrent transmissions interfere. The advent of networked devices with multiple antennas allows new ways to improve Wi-Fi's performance: a host can align the phases of the signals either received at or transmitted from its antennas so as to either maximize the power of the signal of interest through beamforming or minimize the power of interference through nulling. Theory predicts that these techniques should enable concurrent transmissions by proximal sender-receiver pairs, thus improving capacity. Yet practical challenges remain. Hardware platform limitations can prevent precise measurement of the wireless channel, or limit the accuracy of beamforming and nulling. The interaction between nulling and Wi-Fi's OFDM modulation, which transmits tranches of a packet's bits on distinct subcarriers, is subtle and can sacrifice the capacity gain expected from nulling. And in deployments where Wi-Fi networks are independently administered, APs must efficiently share channel measurements and coordinate their transmissions to null effectively. In this thesis, I design and experimentally evaluate beamforming and nulling techniques for use in Wi-Fi networks that address the aforementioned practical challenges. My contributions include: - Cone of Silence (CoS): a system that allows a Wi-Fi AP equipped with a phased-array antenna but only a single 802.11g radio to mitigate interference from senders other than its intended one, thus boosting throughput; - Cooperative Power Allocation (COPA): a system that efficiently shares channel measurements and coordinates transmissions between independent APs, and cooperatively allocates power so as to render received power across OFDM subcarriers flat at each AP's receiver, thus boosting throughput; - Power Allocation for Distributed MIMO (PADM): a system that leverages intelligent power allocation to mitigate inter-stream interference in distributed MIMO wireless networks, thus boosting throughput

    Interference Management Techniques for Cellular Wireless Communication Systems

    Get PDF
    The growing demand for higher capacity wireless networks can be met by increasing the frequency bandwidth, spectral efficiency, and base station density. Flexible spectrum access, multiantenna, and multicarrier techniques are key enablers in satisfying the demand. In addition, automation of tasks related to network planning, optimization, interference management, and maintenance are needed in order to ensure cost-efficiency. Effective, dynamic, and automated interference management tailored for bursty and local data traffic plays a central role in the task. Adjacent channel interference (ACI) management is an enabler for flexible spectrum use and uncoordinated network deployments. In this thesis the impact of ACI in local area time division duplex (TDD) cellular systems is demonstrated. A method is proposed where the transmitters optimize their transmitted spectral shape on-line, such that constraints on ACI induced by power amplifier non-linearity are met. The proposed method increases the fairness among spectrum sharing transceivers when ACI is a limiting factor. A novel interference-aware scheduling technique is proposed and analyzed. The technique manages co-channel interference (CCI) in a decentralized fashion, relying on beacon messages sent by data receivers. It is demonstrated that the proposed technique is an enabler for fair spectrum sharing among operators, independent adaptation of uplink/downlink switching points in TDD networks, and it provides overall more fair and spectrally efficient wireless access. Especially, the technique is able to improve the cell-edge throughput tremendously. New services are emerging that generate local traffic among the users in addition to the data traffic between the users and the network. Such device-to-device (D2D) traffic is effectively served by direct transmissions. The thesis demonstrates the possibilities for allowing such direct D2D transmissions on a shared band together with the cellular communication. It is shown that interference management is needed in order to facilitate reliable and efficient shared band operation. For this purpose, three methods are proposed that provide interference aware power control, interference aware multiuser and multiband resource allocation, and interference avoiding spatial precoding. It is shown that enabling direct transmission itself provides most of the gains in system capacity, while the interference management schemes are more important in promoting fairness and reliability.Langattomien tietoliikenneverkkojen käyttÜ kasvaa erittäin nopeasti mobiilien internet-palvelujen ja älykkäiden päätelaitteiden suosion myÜtä. Järjestelmien tiedonsiirtokapasiteettiä voidaan lisätä kasvattamalla kaistanleveyttä, spektritehokkuutta ja tukiasemaverkon tiheyttä. Kehityksen mahdollistaa mm. joustava taajuuksien käyttÜ ja moniantenni- ja monikantoaaltotekniikat. Lisäksi radioverkkojen suunnitteluun, optimointiin, ylläpitoon ja interferenssinhallintaan liittyvien tehtävien automatisoinnilla voidaan pienentää verkko-operaattoreiden kustannuksia. Tässä hetkellisen ja paikallisen tietoliikenteen tehokas, dynaaminen ja automatisoitu interferenssinhallinta on keskeisessä asemassa. Viereisen kanavan interferenssin hallinta mahdollistaa osaltaan joustavan spektrinkäytÜn ja koordinoimattoman verkkojen asennuksen. VäitÜskirjassa on analysoitu viereisen kanavan interferenssin vaikutusta aikajakoiseen dupleksilähetykseen perustuvien paikallisten radioverkkojen toimintaan. Lisäksi väitÜskirjassa on kehitetty menetelmä, jolla voidaan hallita interferenssiä reaaliaikaisesti. Menetelmä maksimoi lähetetyn signaalin spektritehokkuuden siten, että tehovahvistimen epälineaarisuuden aiheuttama viereisen kanavan interferenssi on rajoitettu. VäitÜskirjassa on kehitetty ja analysoitu uudenlainen interferenssitietoinen lähetysten ajoitustekniikka. Tekniikka hallitsee reaaliaikaisesti ja hajautetusti saman kanavan interferenssiä vastaanottimien lähettämien majakkasignaalien avulla. Esitetyt simulaatiot osoittavat, että tämä mahdollistaa operaattoreiden välisen taajuuskaistojen jaon, ja alas- ja yloslinkkien aikajaon joustavan säädÜn. Tämän lisäksi on mahdollista saavuttaa korkeampi yleinen spektritehokkuus. Erityisesti tiedonsiirtonopeus solujen reunoille kasvaa esitetyn tekniikan avulla huomattavasti. Uudenlaiset tietoliikennepalvelut lisäävät laitteidenvälisen paikallisen tietoliikenteen määrää. SpektrinkäytÜn kannalta tämä liikenne on tehokkainta lähettää suoraan laitteesta toiseen. VäitÜskirjassa on tutkittu joustavaa spektrinkäyttÜä suorien laitteidenvälisten lähetysten ja soluverkon välillä. Interferenssin hallinta takaa luotettavan ja tehokkaan spektrin yhteiskäytÜn. Tätä varten väitÜskirjassa on kehitetty kolme menetelmää, jotka perustuvat tehonsäätÜÜn, lähetysten ajoitukseen ja moniantennilähetykseen

    Enhancing wireless local area networks by leveraging diverse frequency resources

    Get PDF
    In this thesis, signal propagation variations that are experience over the frequency resources of IEEE 802.11 Wireless Local Area Networks (WLANs) are studied. It is found that exploitation of these variations can improve several aspects of wireless communication systems. To this aim, frequency varying behavior is addressed at two different levels. First, the intra-channel scale is considered, i.e. variations over the continuous frequency block that a device uses for a cohesive transmission. Variations at this level are well known but current wireless systems restrict to basic equalization techniques to balance the received signal. In contrast, this work shows that more fine grained adaptation to these differences can accomplish throughput and connection range gains. Second, multi-frequency band enabled devices that access widely differing frequency resources in the millimeter wave range as well as in the microwave range are analyzed. These devices that are expected to follow the IEEE 802.11ad specification experience intense propagation variations over their frequency resources. Thus, a part of this thesis revises, the theoretical specification of the IEEE 802.11ad standard and complements it by a measurement study of first generation millimeter wave devices. This study reveals deficiencies of first generation millimeter wave systems, whose improvement will pose new challenges to the protocol design of future generation systems. These challenges are than addressed by novel methods that leverage from frequency varying propagation characteristics. The first method, improves the beam training process of millimeter wave networks, that need highly directional, though electronically steered, transmissions to overcome increased free space attenuation. By leveraging from omni-directional signal propagation at the microwave bands, efficient direction interference is utilized to provide information to millimeter wave interfaces and replace brute force direction testing. Second, deafness effects at the millimeter wave band, which impact IEEE 802.11 channel access methods are addressed. As directional communication on these bands complicates sensing the medium to be busy or idle, inefficiencies and unfairness are implied. By using coordination message exchange on the legacyWi-Fi frequencies with omnidirectional communication properties, these effects are countered. The millimeter wave bands can thus unfold their full potential, being exclusively used for high speed data frame transmission.Programa Oficial de Doctorado en IngenierĂ­a TelemĂĄticaPresidente: Ralf Steinmetz.- Secretario: Albert Banchs Roca.- Vocal: Kyle Jamieso

    D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies

    Full text link
    This document provides the most recent updates on the technical contributions and research challenges focused in WP3. Each Technology Component (TeC) has been evaluated under possible uniform assessment framework of WP3 which is based on the simulation guidelines of WP6. The performance assessment is supported by the simulation results which are in their mature and stable state. An update on the Most Promising Technology Approaches (MPTAs) and their associated TeCs is the main focus of this document. Based on the input of all the TeCs in WP3, a consolidated view of WP3 on the role of multinode/multi-antenna transmission technologies in 5G systems has also been provided. This consolidated view is further supported in this document by the presentation of the impact of MPTAs on METIS scenarios and the addressed METIS goals.Aziz, D.; Baracca, P.; De Carvalho, E.; Fantini, R.; Rajatheva, N.; Popovski, P.; Sørensen, JH.... (2015). D 3. 3 Final performance results and consolidated view on the most promising multi -node/multi -antenna transmission technologies. http://hdl.handle.net/10251/7675

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    corecore