5,895 research outputs found

    Solving Hard Control Problems in Voting Systems via Integer Programming

    Full text link
    Voting problems are central in the area of social choice. In this article, we investigate various voting systems and types of control of elections. We present integer linear programming (ILP) formulations for a wide range of NP-hard control problems. Our ILP formulations are flexible in the sense that they can work with an arbitrary number of candidates and voters. Using the off-the-shelf solver Cplex, we show that our approaches can manipulate elections with a large number of voters and candidates efficiently

    Possible Winners in Noisy Elections

    Full text link
    We consider the problem of predicting winners in elections, for the case where we are given complete knowledge about all possible candidates, all possible voters (together with their preferences), but where it is uncertain either which candidates exactly register for the election or which voters cast their votes. Under reasonable assumptions, our problems reduce to counting variants of election control problems. We either give polynomial-time algorithms or prove #P-completeness results for counting variants of control by adding/deleting candidates/voters for Plurality, k-Approval, Approval, Condorcet, and Maximin voting rules. We consider both the general case, where voters' preferences are unrestricted, and the case where voters' preferences are single-peaked.Comment: 34 page

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    The Complexity of Manipulating kk-Approval Elections

    Full text link
    An important problem in computational social choice theory is the complexity of undesirable behavior among agents, such as control, manipulation, and bribery in election systems. These kinds of voting strategies are often tempting at the individual level but disastrous for the agents as a whole. Creating election systems where the determination of such strategies is difficult is thus an important goal. An interesting set of elections is that of scoring protocols. Previous work in this area has demonstrated the complexity of misuse in cases involving a fixed number of candidates, and of specific election systems on unbounded number of candidates such as Borda. In contrast, we take the first step in generalizing the results of computational complexity of election misuse to cases of infinitely many scoring protocols on an unbounded number of candidates. Interesting families of systems include kk-approval and kk-veto elections, in which voters distinguish kk candidates from the candidate set. Our main result is to partition the problems of these families based on their complexity. We do so by showing they are polynomial-time computable, NP-hard, or polynomial-time equivalent to another problem of interest. We also demonstrate a surprising connection between manipulation in election systems and some graph theory problems

    The Shield that Never Was: Societies with Single-Peaked Preferences are More Open to Manipulation and Control

    Get PDF
    Much work has been devoted, during the past twenty years, to using complexity to protect elections from manipulation and control. Many results have been obtained showing NP-hardness shields, and recently there has been much focus on whether such worst-case hardness protections can be bypassed by frequently correct heuristics or by approximations. This paper takes a very different approach: We argue that when electorates follow the canonical political science model of societal preferences the complexity shield never existed in the first place. In particular, we show that for electorates having single-peaked preferences, many existing NP-hardness results on manipulation and control evaporate.Comment: 38 pages, 2 figure

    On the Hardness of Bribery Variants in Voting with CP-Nets

    Full text link
    We continue previous work by Mattei et al. (Mattei, N., Pini, M., Rossi, F., Venable, K.: Bribery in voting with CP-nets. Ann. of Math. and Artif. Intell. pp. 1--26 (2013)) in which they study the computational complexity of bribery schemes when voters have conditional preferences that are modeled by CP-nets. For most of the cases they considered, they could show that the bribery problem is solvable in polynomial time. Some cases remained open---we solve two of them and extend the previous results to the case that voters are weighted. Moreover, we consider negative (weighted) bribery in CP-nets, when the briber is not allowed to pay voters to vote for his preferred candidate.Comment: improved readability; identified Cheapest Subsets to be the enumeration variant of K.th Largest Subset, so we renamed it to K-Smallest Subsets and point to the literatur; some more typos fixe
    corecore