235 research outputs found

    Real Algebraic Geometry With A View Toward Systems Control and Free Positivity

    Get PDF
    New interactions between real algebraic geometry, convex optimization and free non-commutative geometry have recently emerged, and have been the subject of numerous international meetings. The aim of the workshop was to bring together experts, as well as young researchers, to investigate current key questions at the interface of these fields, and to explore emerging interdisciplinary applications

    Sampling the Multiple Facets of Light

    Get PDF
    The theme of this thesis revolves around three important manifestations of light, namely its corpuscular, wave and electromagnetic nature. Our goal is to exploit these principles to analyze, design and build imaging modalities by developing new signal processing and algorithmic tools, based in particular on sampling and sparsity concepts. First, we introduce a new sampling scheme called variable pulse width, which is based on the finite rate of innovation (FRI) sampling paradigm. This new framework enables to sample and perfectly reconstruct weighted sums of Lorentzians; perfect reconstruction from sampled signals is guaranteed by a set of theorems. Second, we turn to the context of light and study its reflection, which is based on the corpuscular model of light. More precisely, we propose to use our FRI-based model to represent bidirectional reflectance distribution functions. We develop dedicated light domes to acquire reflectance functions and use the measurements obtained to demonstrate the usefulness and versatility of our model. In particular, we concentrate on the representation of specularities, which are sharp and bright components generated by the direct reflection of light on surfaces. Third, we explore the wave nature of light through Lippmann photography, a century-old photography technique that acquires the entire spectrum of visible light. This fascinating process captures interferences patterns created by the exposed scene inside the depth of a photosensitive plate. By illuminating the developed plate with a neutral light source, the reflected spectrum corresponds to that of the exposed scene. We propose a mathematical model which precisely explains the technique and demonstrate that the spectrum reproduction suffers from a number of distortions due to the finite depth of the plate and the choice of reflector. In addition to describing these artifacts, we describe an algorithm to invert them, essentially recovering the original spectrum of the exposed scene. Next, the wave nature of light is further generalized to the electromagnetic theory, which we invoke to leverage the concept of polarization of light. We also return to the topic of the representation of reflectance functions and focus this time on the separation of the specular component from the other reflections. We exploit the fact that the polarization of light is preserved in specular reflections and investigate camera designs with polarizing micro-filters with different orientations placed just in front of the camera sensor; the different polarizations of the filters create a mosaic image, from which we propose to extract the specular component. We apply our demosaicing method to several scenes and additionally demonstrate that our approach improves photometric stereo. Finally, we delve into the problem of retrieving the phase information of a sparse signal from the magnitude of its Fourier transform. We propose an algorithm that resolves the phase retrieval problem for sparse signals in three stages. Unlike traditional approaches that recover a discrete approximation of the underlying signal, our algorithm estimates the signal on a continuous domain, which makes it the first of its kind. The concluding chapter outlines several avenues for future research, like new optical devices such as displays and digital cameras, inspired by the topic of Lippmann photography

    Bifurcation analysis of the Topp model

    Get PDF
    In this paper, we study the 3-dimensional Topp model for the dynamicsof diabetes. We show that for suitable parameter values an equilibrium of this modelbifurcates through a Hopf-saddle-node bifurcation. Numerical analysis suggests thatnear this point Shilnikov homoclinic orbits exist. In addition, chaotic attractors arisethrough period doubling cascades of limit cycles.Keywords Dynamics of diabetes · Topp model · Reduced planar quartic Toppsystem · Singular point · Limit cycle · Hopf-saddle-node bifurcation · Perioddoubling bifurcation · Shilnikov homoclinic orbit · Chao

    CRS-stack-based seismic reflection imaging for land data in time and depth domains

    Get PDF
    Land data acquisition often suffers from rough top-surface topography and complicated near-surface conditions. The resulting poor data quality makes conventional data processing very difficult. Under such circumstances, where simple model assumptions may fail, it is of particular importance to extract as much information as possible directly from the measured data. Fortunately, the ongoing increase in available computing power makes advanced data-driven imaging approaches feasible; thus, these have increasingly gained in relevance during the past few years. The common-reflection-surface (CRS) stack, a generalized high-density velocity analysis and stacking process, is one of these promising methods. It is applied in a non-interactive manner and provides, besides an improved zero-offset simulation, an entire set of physically interpretable stacking parameters that include and complement the conventional stacking velocity. For every zero-offset sample, these so-called kinematic wavefield attributes are obtained as a by-product of the data-driven stacking process. As will be shown, they can be applied both to improve the stack itself and to support subsequent processing steps...thesi

    Structual-acoustic properties of automotive panels with shell elements

    Get PDF
    The automotive industry has witnessed a trend in the recent years of reducing the bulk weight of the vehicle in order to achieve improved ride dynamics and economical fuel consumption. Unfortunately, reducing the bulk weight often compromises the noise, vibra- tion, and harshness (NVH) characteristics of the vehicle. In general, the automotive body panels are made out of thin sheet metals (steel and aluminium) that have a very low bend- ing stiffness. Hence, it becomes important to find countermeasures that will increase the structural stiffness of these thin body panels without affecting their bulk weight. One such countermeasure is to introduce the geometrical indentations on various body panels. The geometrical indentation explained in this thesis is in the shape of elliptical dome, which supports the increase of the structural stiffness whilst keeping the bulk weight constant. The primary reason to choose elliptical domes as the applied geometrical indentation is due to a significant amount of interest shown by Jaguar Land Rover. Moreover, the elliptical domes, because of the nature of its design, can cover a larger surface area with minimal depth, thereby, eliminating the possibility of sharp and pointy indentations. This thesis presents a comprehensive study of the structural-acoustic behaviour of the automotive-type panels with dome-shaped indentations. The ultimate aim of this research is to establish a set of design guidelines in order to produce automotive-type panels with optimised dome-shaped indentations. In order to do so, a new design optimisation strategy is proposed that results in the optimal placement of the required dome-shaped indenta- tions. The optimisation problem addressed in this thesis is unlike a general mathematical problem, and requires specific methodologies for its solution. Therefore, the use of genetic algorithm is observed as the most suitable method in order to tackle this type of design optimisation problem. During the development of the optimisation procedure, the preliminary results show a consistency in the design patterns. This led to the motivation to investigate a few intuitively designed panels, which are inspired by the initial, trial, optimisation results. Therefore, four intuitively designed panels are investigated for their structural-acoustic characteristics. The study of the intuitively designed panels provided essential physical insight into the design optimisation problem, which ultimately defined the guidelines in order to develop the proposed optimisation procedure. This type of optimisation procedure is completely new in the domain of structural-acoustic optimisation. The efficiency of the underlying work lies in the separate investigation of both the structural and the acoustic properties of the panels with various dome-shaped indentations, and then utilising the insights gained in order to develop a specific optimisation algorithm to stream-line the dome-shaped panel design procedure

    Computer Science for Continuous Data:Survey, Vision, Theory, and Practice of a Computer Analysis System

    Get PDF
    Building on George Boole's work, Logic provides a rigorous foundation for the powerful tools in Computer Science that underlie nowadays ubiquitous processing of discrete data, such as strings or graphs. Concerning continuous data, already Alan Turing had applied "his" machines to formalize and study the processing of real numbers: an aspect of his oeuvre that we transform from theory to practice.The present essay surveys the state of the art and envisions the future of Computer Science for continuous data: natively, beyond brute-force discretization, based on and guided by and extending classical discrete Computer Science, as bridge between Pure and Applied Mathematics

    Electromagnetic Theory and Applications

    Get PDF
    This book intends to provide both the fundamentals of Electromagnetics but also some practical applications of the concepts covered. Having taught electromagnetics for several years, the authors feel that many times the field of electromagnetics comes as “old” and often times students do not appreciate the concepts and their importance in everyday applications. The authors intend to accompany the EM concepts with life applications. Hence, students may see the direct impact of the knowledge they acquire through the study of the field of electromagnetics and better appreciate the field

    Recent Advances in Industrial and Applied Mathematics

    Get PDF
    This open access book contains review papers authored by thirteen plenary invited speakers to the 9th International Congress on Industrial and Applied Mathematics (Valencia, July 15-19, 2019). Written by top-level scientists recognized worldwide, the scientific contributions cover a wide range of cutting-edge topics of industrial and applied mathematics: mathematical modeling, industrial and environmental mathematics, mathematical biology and medicine, reduced-order modeling and cryptography. The book also includes an introductory chapter summarizing the main features of the congress. This is the first volume of a thematic series dedicated to research results presented at ICIAM 2019-Valencia Congress
    corecore