4,315 research outputs found

    Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks

    Get PDF
    The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems

    Electrical Impedance Tomography: A Fair Comparative Study on Deep Learning and Analytic-based Approaches

    Full text link
    Electrical Impedance Tomography (EIT) is a powerful imaging technique with diverse applications, e.g., medical diagnosis, industrial monitoring, and environmental studies. The EIT inverse problem is about inferring the internal conductivity distribution of an object from measurements taken on its boundary. It is severely ill-posed, necessitating advanced computational methods for accurate image reconstructions. Recent years have witnessed significant progress, driven by innovations in analytic-based approaches and deep learning. This review explores techniques for solving the EIT inverse problem, focusing on the interplay between contemporary deep learning-based strategies and classical analytic-based methods. Four state-of-the-art deep learning algorithms are rigorously examined, harnessing the representational capabilities of deep neural networks to reconstruct intricate conductivity distributions. In parallel, two analytic-based methods, rooted in mathematical formulations and regularisation techniques, are dissected for their strengths and limitations. These methodologies are evaluated through various numerical experiments, encompassing diverse scenarios that reflect real-world complexities. A suite of performance metrics is employed to assess the efficacy of these methods. These metrics collectively provide a nuanced understanding of the methods' ability to capture essential features and delineate complex conductivity patterns. One novel feature of the study is the incorporation of variable conductivity scenarios, introducing a level of heterogeneity that mimics textured inclusions. This departure from uniform conductivity assumptions mimics realistic scenarios where tissues or materials exhibit spatially varying electrical properties. Exploring how each method responds to such variable conductivity scenarios opens avenues for understanding their robustness and adaptability

    Methods for the Electrical Impedance Tomography Inverse Problem: Deep Learning and Regularization with Wavelets

    Get PDF
    Electrical impedance tomography, also known as EIT, is a type of diffusive imaging modality that is non-invasive, radiation-free, and cost-effective for recovering electrical properties within a closed domain from surface measurements. The process involves injecting electrical current into a set of electrodes to measure the voltage on the smooth surface of the domain. The recovered EIT images show how well different materials or tissues within the domain conduct or impede electrical flow, which is helpful in detecting and locating anomalies. For the EIT inverse problem, it is challenging to recover reliable and resolvable electrical conductivity images since it is highly nonlinear and severely ill-posed, especially when the data is corrupted with noise. To address this issue, we propose (1) a wavelet-based modified Gauss-Newton (WGN) method that uses wavelets as a form of regularization and parameter reduction. In (1), we enforce regularization through the use of wavelet coefficients by projecting the original formulation to the wavelet domain and then only retaining the wavelet coefficients of highest power. The projected wavelet formulation is of a smaller dimension and, therefore, shows promise in improving the ill-posedness of the EIT inverse problem. Different wavelet families are implemented to capture localized features, smoothness, and irregularities within the domain. In addition, we also propose (2) a novel deep learning algorithm to solve the EIT inverse problem. In (2), we develop a deep neural network (DNN) with multiple transposed convolutional layers and activation functions to recover the EIT images. The DNN is first trained on a large set of EIT images and data, and then we recover EIT images in real-time from the trained DNN. We compare the image reconstructions from the DNN with a benchmark algorithm. For model validation, we employed a set of synthetic examples with various anomalies to test the performance and efficacy of both the DNN and WGN method. The results from both methods show promise in improving EIT image reconstructions

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    Networks for Nonlinear Diffusion Problems in Imaging

    Get PDF
    A multitude of imaging and vision tasks have seen recently a major transformation by deep learning methods and in particular by the application of convolutional neural networks. These methods achieve impressive results, even for applications where it is not apparent that convolutions are suited to capture the underlying physics. In this work we develop a network architecture based on nonlinear diffusion processes, named DiffNet. By design, we obtain a nonlinear network architecture that is well suited for diffusion related problems in imaging. Furthermore, the performed updates are explicit, by which we obtain better interpretability and generalisability compared to classical convolutional neural network architectures. The performance of DiffNet tested on the inverse problem of nonlinear diffusion with the Perona-Malik filter on the STL-10 image dataset. We obtain competitive results to the established U-Net architecture, with a fraction of parameters and necessary training data

    Electrical impedance tomography: methods and applications

    Get PDF
    • …
    corecore