617 research outputs found

    Applications of Artificial Intelligence in Power Systems

    Get PDF
    Artificial intelligence tools, which are fast, robust and adaptive can overcome the drawbacks of traditional solutions for several power systems problems. In this work, applications of AI techniques have been studied for solving two important problems in power systems. The first problem is static security evaluation (SSE). The objective of SSE is to identify the contingencies in planning and operations of power systems. Numerical conventional solutions are time-consuming, computationally expensive, and are not suitable for online applications. SSE may be considered as a binary-classification, multi-classification or regression problem. In this work, multi-support vector machine is combined with several evolutionary computation algorithms, including particle swarm optimization (PSO), differential evolution, Ant colony optimization for the continuous domain, and harmony search techniques to solve the SSE. Moreover, support vector regression is combined with modified PSO with a proposed modification on the inertia weight in order to solve the SSE. Also, the correct accuracy of classification, the speed of training, and the final cost of using power equipment heavily depend on the selected input features. In this dissertation, multi-object PSO has been used to solve this problem. Furthermore, a multi-classifier voting scheme is proposed to get the final test output. The classifiers participating in the voting scheme include multi-SVM with different types of kernels and random forests with an adaptive number of trees. In short, the development and performance of different machine learning tools combined with evolutionary computation techniques have been studied to solve the online SSE. The performance of the proposed techniques is tested on several benchmark systems, namely the IEEE 9-bus, 14-bus, 39-bus, 57-bus, 118-bus, and 300-bus power systems. The second problem is the non-convex, nonlinear, and non-differentiable economic dispatch (ED) problem. The purpose of solving the ED is to improve the cost-effectiveness of power generation. To solve ED with multi-fuel options, prohibited operating zones, valve point effect, and transmission line losses, genetic algorithm (GA) variant-based methods, such as breeder GA, fast navigating GA, twin removal GA, kite GA, and United GA are used. The IEEE systems with 6-units, 10-units, and 15-units are used to study the efficiency of the algorithms

    Applications of Artificial Intelligence in Power Systems

    Get PDF
    Artificial intelligence tools, which are fast, robust and adaptive can overcome the drawbacks of traditional solutions for several power systems problems. In this work, applications of AI techniques have been studied for solving two important problems in power systems. The first problem is static security evaluation (SSE). The objective of SSE is to identify the contingencies in planning and operations of power systems. Numerical conventional solutions are time-consuming, computationally expensive, and are not suitable for online applications. SSE may be considered as a binary-classification, multi-classification or regression problem. In this work, multi-support vector machine is combined with several evolutionary computation algorithms, including particle swarm optimization (PSO), differential evolution, Ant colony optimization for the continuous domain, and harmony search techniques to solve the SSE. Moreover, support vector regression is combined with modified PSO with a proposed modification on the inertia weight in order to solve the SSE. Also, the correct accuracy of classification, the speed of training, and the final cost of using power equipment heavily depend on the selected input features. In this dissertation, multi-object PSO has been used to solve this problem. Furthermore, a multi-classifier voting scheme is proposed to get the final test output. The classifiers participating in the voting scheme include multi-SVM with different types of kernels and random forests with an adaptive number of trees. In short, the development and performance of different machine learning tools combined with evolutionary computation techniques have been studied to solve the online SSE. The performance of the proposed techniques is tested on several benchmark systems, namely the IEEE 9-bus, 14-bus, 39-bus, 57-bus, 118-bus, and 300-bus power systems. The second problem is the non-convex, nonlinear, and non-differentiable economic dispatch (ED) problem. The purpose of solving the ED is to improve the cost-effectiveness of power generation. To solve ED with multi-fuel options, prohibited operating zones, valve point effect, and transmission line losses, genetic algorithm (GA) variant-based methods, such as breeder GA, fast navigating GA, twin removal GA, kite GA, and United GA are used. The IEEE systems with 6-units, 10-units, and 15-units are used to study the efficiency of the algorithms

    Investigating evolutionary computation with smart mutation for three types of Economic Load Dispatch optimisation problem

    Get PDF
    The Economic Load Dispatch (ELD) problem is an optimisation task concerned with how electricity generating stations can meet their customers’ demands while minimising under/over-generation, and minimising the operational costs of running the generating units. In the conventional or Static Economic Load Dispatch (SELD), an optimal solution is sought in terms of how much power to produce from each of the individual generating units at the power station, while meeting (predicted) customers’ load demands. With the inclusion of a more realistic dynamic view of demand over time and associated constraints, the Dynamic Economic Load Dispatch (DELD) problem is an extension of the SELD, and aims at determining the optimal power generation schedule on a regular basis, revising the power system configuration (subject to constraints) at intervals during the day as demand patterns change. Both the SELD and DELD have been investigated in the recent literature with modern heuristic optimisation approaches providing excellent results in comparison with classical techniques. However, these problems are defined under the assumption of a regulated electricity market, where utilities tend to share their generating resources so as to minimise the total cost of supplying the demanded load. Currently, the electricity distribution scene is progressing towards a restructured, liberalised and competitive market. In this market the utility companies are privatised, and naturally compete with each other to increase their profits, while they also engage in bidding transactions with their customers. This formulation is referred to as: Bid-Based Dynamic Economic Load Dispatch (BBDELD). This thesis proposes a Smart Evolutionary Algorithm (SEA), which combines a standard evolutionary algorithm with a “smart mutation” approach. The so-called ‘smart’ mutation operator focuses mutation on genes contributing most to costs and penalty violations, while obeying operational constraints. We develop specialised versions of SEA for each of the SELD, DELD and BBDELD problems, and show that this approach is superior to previously published approaches in each case. The thesis also applies the approach to a new case study relevant to Nigerian electricity deregulation. Results on this case study indicate that our SEA is able to deal with larger scale energy optimisation tasks

    Using Improved DDAO Algorithm to Solve Economic Emission Load Dispatch Problem in the Presence of Wind Farms

    Get PDF
    In power systems planning, economic load dispatch considering the uncertainty of renewable energy sources is one of the most important challenges that researchers have been concerned about. Complex operational constraints, non-convex cost functions of power generation, and some uncertainties make it difficult to solve this problem through conventional optimization techniques. In this article, an improved dynamic differential annealed optimization (IDDAO) meta-heuristic algorithm, which is an improved version of the dynamic differential annealed optimization (DDAO) algorithm has been introduced. This algorithm has been used to solve the economic emission load dispatch (EELD) problem in power systems that include wind farms, and the performance of the proposed technique was evaluated in the IEEE 40-unit and 6-unit standard test systems. The results obtained from numerical simulations demonstrate the profound accuracy and convergence speed of the proposed IDDAO algorithm compared to conventional optimization algorithms including, PSO, GSA, and DDAO, while independent runs indicate the robustness and stability of the proposed algorithm

    Intelligent power system operation in an uncertain environment

    Get PDF
    This dissertation presents some challenging problems in power system operations. The efficacy of a heuristic method, namely, modified discrete particle swarm optimization (MDPSO) algorithm is illustrated and compared with other methods by solving the reliability based generator maintenance scheduling (GMS) optimization problem of a practical hydrothermal power system. The concept of multiple swarms is incorporated into the MDPSO algorithm to form a robust multiple swarms-modified particle swarm optimization (MS-MDPSO) algorithm and applied to solving the GMS problem on two power systems. Heuristic methods are proposed to circumvent the problems of imposed non-smooth assumptions common with the classical approaches in solving the challenging dynamic economic dispatch problem. The multi-objective combined economic and emission dispatch (MO-CEED) optimization problem for a wind-hydrothermal power system is formulated and solved in this dissertation. This MO-CEED problem formulation becomes a challenging problem because of the presence of uncertainty in wind power. A family of distributed optimal Pareto fronts for the MO-CEED problem has been generated for different scenarios of capacity credit of wind power. A real-time (RT) network stability index is formulated for determining a power system\u27s ability to continue to provide service (electric energy) in a RT manner in case of an unforeseen catastrophic contingency. Cascading stages of fuzzy inference system is applied to combine non real-time (NRT) and RT power system assessments. NRT analysis involves eigenvalue and transient energy analysis. RT analysis involves angle, voltage and frequency stability indices. RT Network status index is implemented in real-time on a practical power system --Abstract, page iv

    An application of improved salp swarm algorithm for optimal power flow solution considering stochastic solar power generation

    Get PDF
    This paper describes the use of an improved version of the Salp Swarm Algorithm, known as iSSA, to address Optimal Power Flow (OPF) issues in power system management. The iSSA is applied to OPF problems involving stochastic solar power generation, with the goal of optimizing control variables such as real power generation, voltage magnitude at generation buses, transformer tap settings, and reactive power compensation. The optimization aims to achieve three objectives: minimizing power loss, minimizing cost, and minimizing combined cost and emissions from power generation. The iSSA's performance was tested on a modified IEEE 30-bus system and compared to other recent algorithms, including SSA. The simulation results show that the iSSA outperformed all compared algorithms for all objective functions that have been derived in this study

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed

    Symbiotic Organisms Search Algorithm: theory, recent advances and applications

    Get PDF
    The symbiotic organisms search algorithm is a very promising recent metaheuristic algorithm. It has received a plethora of attention from all areas of numerical optimization research, as well as engineering design practices. it has since undergone several modifications, either in the form of hybridization or as some other improved variants of the original algorithm. However, despite all the remarkable achievements and rapidly expanding body of literature regarding the symbiotic organisms search algorithm within its short appearance in the field of swarm intelligence optimization techniques, there has been no collective and comprehensive study on the success of the various implementations of this algorithm. As a way forward, this paper provides an overview of the research conducted on symbiotic organisms search algorithms from inception to the time of writing, in the form of details of various application scenarios with variants and hybrid implementations, and suggestions for future research directions

    Optimal Participation of Power Generating Companies in a Deregulated Electricity Market

    Get PDF
    The function of an electric utility is to make stable electric power available to consumers in an efficient manner. This would include power generation, transmission, distribution and retail sales. Since the early nineties however, many utilities have had to change from the vertically integrated structure to a deregulated system where the services were unbundled due to a rapid demand growth and need for better economic benefits. With the unbundling of services came competition which pushed innovation and led to the improvement of efficiency. In a deregulated power system, power generators submit offers to sell energy and operating reserve in the electricity market. The market can be described more as oligopolistic with a System Operator in-charge of the power grid, matching the offers to supply with the bid in demands to determine the market clearing price for each interval. This price is what is paid to all generators. Energy is sold in the day-ahead market where offers are submitted hours prior to when it is needed. The spot energy market caters to unforeseen rise in load demand and thus commands a higher price for electrical energy than the day-ahead market. A generating company can improve its profit by using an appropriate bidding strategy. This improvement is affected by the nature of bids from competitors and uncertainty in demand. In a sealed bid auction, bids are submitted simultaneously within a timeframe and are confidential, thus a generator has no information on rivals’ bids. There have been studies on methods used by generators to build optimal offers considering competition. However, many of these studies base estimations of rivals’ behaviour on analysis with sufficient bidding history data from the market. Historical data on bidding behaviour may not be readily available in practical systems. The work reported in this thesis explores ways a generator can make security-constrained offers in different markets considering incomplete market information. It also incorporates possible uncertainty in load forecasts. The research methodology used in this thesis is based on forecasting and optimization. Forecasts of market clearing price for each market interval are calculated and used in the objective function of profit maximization to get maximum benefit at the interval. Making these forecasts includes competition into the bid process. Results show that with information on historical data available, a generator can make adequate short-term analysis on market behaviour and thus optimize its benefits for the period. This thesis provides new insights into power generators’ approach in making optimal bids to maximize market benefits

    Microgrid optimization, modelling and control

    Get PDF
    2014 Fall.To view the abstract, please see the full text of the document
    • 

    corecore