3,689 research outputs found

    Multi-agent control and operation of electric power distribution systems

    Get PDF
    This dissertation presents operation and control strategies for electric power distribution systems containing distributed generators. First, models of microturbines and fuel cells are developed. These dynamic models are incorporated in a power system analysis package. Second, operation of these generators in a distribution system is addressed and load following schemes are designed. The penetration of distributed generators (DGs) into the power distribution system stability becomes an issue and so the control of those DGs becomes necessary. A decentralized control structure based on conventional controllers is designed for distributed generators using a new developed optimization technique called Guided Particle Swarm Optimization. However, the limitations of the conventional controllers do not satisfy the stability requirement of a power distribution system that has a high DG penetration level, which imposes the necessity of developing a new control structure able to overcome the limitations imposed by the fixed structure conventional controllers and limit the penetration of DGs in the overall transient stability of the distribution system. Third, a novel multi-agent based control architecture is proposed for transient stability enhancement for distribution systems with microturbines. The proposed control architecture is hierarchical with one supervisory global control agent and a distributed number of local control agents in the lower layer. Specifically, a central control center supervises and optimizes the overall process, while each microturbine is equipped with its own local control agent.;The control of naval shipboard electric power system is another application of distributed control with multi-agent based structure. In this proposal, the focus is to introduce the concept of multi-agent based control architecture to improve the stability of the shipboard power system during faulty conditions. The effectiveness of the proposed methods is illustrated using a 37-bus IEEE benchmark system and an all-electric naval ship

    A Harris Hawks Optimization Based Single- and Multi-Objective Optimal Power Flow Considering Environmental Emission

    Get PDF
    The electric sector is majorly concerned about the greenhouse and non-greenhouse gas emissions generated from both conventional and renewable energy sources, as this is becoming a major issue globally. Thus, the utilities must adhere to certain environmental guidelines for sustainable power generation. Therefore, this paper presents a novel nature-inspired and population-based Harris Hawks Optimization (HHO) methodology for controlling the emissions from thermal generating sources by solving single and multi-objective Optimal Power Flow (OPF) problems. The OPF is a non-linear, non-convex, constrained optimization problem that primarily aims to minimize the fitness function by satisfying the equality and inequality constraints of the system. The cooperative behavior and dynamic chasing patterns of hawks to pounce on escaping prey is modeled mathematically to minimize the objective function. In this paper, fuel cost, real power loss and environment emissions are regarded as single and multi-objective functions for optimal adjustments of power system control variables. The different conflicting framed multi-objective functions have been solved using weighted sums using a no-preference method. The presented method is coded using MATLAB software and an IEEE (Institute of Electrical and Electronics Engineers) 30-bus. The system was used to demonstrate the effectiveness of selective objectives. The obtained results are compared with the other Artificial Intelligence (AI) techniques such as the Whale Optimization Algorithm (WOA), the Salp Swarm Algorithm (SSA), Moth Flame (MF) and Glow Warm Optimization (GWO). Additionally, the study on placement of Distributed Generation (DG) reveals that the system losses and emissions are reduced by an amount of 9.8355% and 26.2%, respectively

    An Efficient Multi-objective Approach for Designing of Communication Interfaces in Smart Grids

    Get PDF

    Multi-Agent Environment for Modelling and Solving Dynamic Transport Problems

    Get PDF
    The transport requirements in modern society are becoming more and more important. Thus, offered transport services need to be more and more advanced and better designed to meet users demands. Important cost factors of many goods are transport costs. Therefore, a reduction of costs, a better adjustment of strategies to the demand as well as a better planning and scheduling of available resources are important for the transport companies. This paper is aimed at modelling and simulation of transport systems, involving a dynamic Pickup and Delivery problem with Time Windows and capacity constraints (PDPTW). PDPTW is defined by a set of transport requests which should be performed while minimising costs expressed by the number of vehicles, total distance and total travel time. Each request is described by two locations: pickup and delivery, periods of time when the operations of pickup or delivery can be performed and a load to be transported. The nature of this problem, its distribution and the possibility of using a lot of autonomous planning modules, lead us to use a multi-agent approach. Our approach allows the modeling of entities which do not appear in the classical PDPTW such as company organisation, communication among vehicles, interactions between vehicles and company dispatcher or different strategies of requests acceptation by different vehicles. This paper presents also a software environment and experimentations to validate the proposed approach
    corecore